If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(w-9)(w-3)+(2w-7)(w+8)=w(2w-6)+41
We move all terms to the left:
(w-9)(w-3)+(2w-7)(w+8)-(w(2w-6)+41)=0
We multiply parentheses ..
(+w^2-3w-9w+27)+(2w-7)(w+8)-(w(2w-6)+41)=0
We calculate terms in parentheses: -(w(2w-6)+41), so:We get rid of parentheses
w(2w-6)+41
We multiply parentheses
2w^2-6w+41
Back to the equation:
-(2w^2-6w+41)
w^2-2w^2-3w-9w+(2w-7)(w+8)+6w+27-41=0
We multiply parentheses ..
w^2-2w^2+(+2w^2+16w-7w-56)-3w-9w+6w+27-41=0
We add all the numbers together, and all the variables
-1w^2+(+2w^2+16w-7w-56)-6w-14=0
We get rid of parentheses
-1w^2+2w^2+16w-7w-6w-56-14=0
We add all the numbers together, and all the variables
w^2+3w-70=0
a = 1; b = 3; c = -70;
Δ = b2-4ac
Δ = 32-4·1·(-70)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-17}{2*1}=\frac{-20}{2} =-10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+17}{2*1}=\frac{14}{2} =7 $
| 3x+2+14x=121 | | (x^2-x)+(2x+108)=180 | | 17x+13=15x-17 | | 4+11=-5(6x-3) | | -2(v-4)=-2(v+1) | | (14)/(y-7)-(2)/(y)=(19y+7)/(y^2-49) | | 19c=20c-13 | | 2(p-11)=14 | | 2x–21=-21 | | (x-1)(x+8)=14 | | 5y+7-2y=5+2y-3 | | -16/m=-4 | | 9(x+7)+6=69 | | X=-2y=7 | | 0=-0.008x^2+0.4x+40 | | 6−6x=5x−9x−2 | | 5y-7-2y=5+2y-3 | | -5g=13-4g | | 4(x=1)-3(2x-6)=-10 | | 4s–1=8–2s | | (0+x)÷2=-50÷3.19 | | -49x=2/3 | | -x–5=16 | | 4(2x-5)=-2(-3x+1) | | 8+5x+24-15x=12 | | 5y+7-22y=5+2y-3 | | 0=n²+n-72 | | 5x2^2=2x5 | | 3=-2/3+b | | 3(x+6)^(2)=-18 | | 3x+16=4x-3=6x+7 | | -5g=13-14g |