(u2+(-24)=u+35

Simple and best practice solution for (u2+(-24)=u+35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (u2+(-24)=u+35 equation:



(u2+(-24)=u+35
We move all terms to the left:
(u2+(-24)-(u+35)=0
We calculate terms in parentheses: +(u2+(-24)-(u+35), so:
u2+(-24)-(u+35
determiningTheFunctionDomain u2-(u+35+(-24)
We add all the numbers together, and all the variables
u^2-(u+35+(-24)
We calculate terms in parentheses: -(u+35+(-24), so:
u+35+(-24
We add all the numbers together, and all the variables
u
Back to the equation:
-(u)
We add all the numbers together, and all the variables
u^2-1u
Back to the equation:
+(u^2-1u)
We get rid of parentheses
u^2-1u=0
a = 1; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*1}=\frac{0}{2} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 3x+14+5x-2=10x-15 | | -9+5m=-54 | | 12z-30=10z+14 | | x+2x-2=2x-8+3x+6 | | c(4)=13 | | -4x+14=-x-3(x-7) | | 10+10m=-8+2m+10m | | -7-3(x+5)=2(-x-11) | | 4x-5+x+1=x+2 | | 2x+1+5x+7=360 | | −r−8r=18 | | H(t)=-4.9t^2+24t+7 | | 2z+13=10+4z+5(3-z) | | 2n+8=-2n-8 | | 2x2+5=5 | | −5x+4x=0 | | 70+65x=200+55x | | 12x+6=(10x+8)+(5x-4) | | -41+10r=9-10(-5r+9 | | (2v)+(-44)=v-44 | | -5(6x-3)=-30x+15 | | 14+2.5X=3x-4 | | 1.49+x=4.96 | | X=45+0.5x+2x=150 | | 56+4x=110 | | 2x-7+3x+2=15 | | 8(x+9)-6=66 | | 8+6x-10x=18-8x | | |4c+8|=2|c+7| | | 3x-1+2x=4x+3 | | 11=v/3-15 | | 30x^2-912x+6912=0 |

Equations solver categories