If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying
(sin(2x))(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (2x)
(ins * 2x)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
(2ins * x)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Multiply ins * x
(2insx)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (2insx)
2insx(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (2x)
2insx(ins * 2x) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
2insx(2ins * x) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Multiply ins * x
2insx(2insx) + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (2insx)
2insx * 2insx + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
2 * 2insx * insx + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Multiply 2 * 2
4insx * insx + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Multiply insx * insx
4i2n2s2x2 + (sin(4x))(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (4x)
4i2n2s2x2 + (ins * 4x)(sin(4x)) + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + (4ins * x)(sin(4x)) + (sin(6x))(sin(6x)) = 2
Multiply ins * x
4i2n2s2x2 + (4insx)(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (4insx)
4i2n2s2x2 + 4insx(sin(4x)) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (4x)
4i2n2s2x2 + 4insx(ins * 4x) + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + 4insx(4ins * x) + (sin(6x))(sin(6x)) = 2
Multiply ins * x
4i2n2s2x2 + 4insx(4insx) + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (4insx)
4i2n2s2x2 + 4insx * 4insx + (sin(6x))(sin(6x)) = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + 4 * 4insx * insx + (sin(6x))(sin(6x)) = 2
Multiply 4 * 4
4i2n2s2x2 + 16insx * insx + (sin(6x))(sin(6x)) = 2
Multiply insx * insx
4i2n2s2x2 + 16i2n2s2x2 + (sin(6x))(sin(6x)) = 2
Remove parenthesis around (6x)
4i2n2s2x2 + 16i2n2s2x2 + (ins * 6x)(sin(6x)) = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + 16i2n2s2x2 + (6ins * x)(sin(6x)) = 2
Multiply ins * x
4i2n2s2x2 + 16i2n2s2x2 + (6insx)(sin(6x)) = 2
Remove parenthesis around (6insx)
4i2n2s2x2 + 16i2n2s2x2 + 6insx(sin(6x)) = 2
Remove parenthesis around (6x)
4i2n2s2x2 + 16i2n2s2x2 + 6insx(ins * 6x) = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + 16i2n2s2x2 + 6insx(6ins * x) = 2
Multiply ins * x
4i2n2s2x2 + 16i2n2s2x2 + 6insx(6insx) = 2
Remove parenthesis around (6insx)
4i2n2s2x2 + 16i2n2s2x2 + 6insx * 6insx = 2
Reorder the terms for easier multiplication:
4i2n2s2x2 + 16i2n2s2x2 + 6 * 6insx * insx = 2
Multiply 6 * 6
4i2n2s2x2 + 16i2n2s2x2 + 36insx * insx = 2
Multiply insx * insx
4i2n2s2x2 + 16i2n2s2x2 + 36i2n2s2x2 = 2
Combine like terms: 4i2n2s2x2 + 16i2n2s2x2 = 20i2n2s2x2
20i2n2s2x2 + 36i2n2s2x2 = 2
Combine like terms: 20i2n2s2x2 + 36i2n2s2x2 = 56i2n2s2x2
56i2n2s2x2 = 2
Solving
56i2n2s2x2 = 2
Solving for variable 'i'.
Move all terms containing i to the left, all other terms to the right.
Divide each side by '56n2s2x2'.
i2 = 0.03571428571n-2s-2x-2
Simplifying
i2 = 0.03571428571n-2s-2x-2
Take the square root of each side:
i = {-0.188982236n-1s-1x-1, 0.188982236n-1s-1x-1}
| (sin(2*x))*(sin(2*x))+(sin(4*x))*(sin(4*x))+(sin(6*x))+(sin(6*x))=2 | | 13=10-(3x+6) | | 72x^4/9x^3 | | 3a=a+3 | | 2100-2/36.2 | | 98-0.5(98-0.5x)=x | | 80x^3=30x^2+35x+40 | | 7p+4=6 | | 7x^2-7x-xy+Y=0 | | 7p=2 | | 5-0.5(5-0.5x)=x | | 6.3-9= | | 5p+7=[4-p] | | 7r+2=5r(r-4) | | 10a+5a=75 | | (2x+9)+43=90 | | 4r+8=6 | | y^2-35=0 | | 6p+14=17 | | 100-x=.5x+(.5x).33 | | 5(2k-m)=ck+5 | | 2xyz^2/2x^2yz^2 | | y=-3x^2+5x | | 36n^3m/9 | | 3*x^4-96x+4=0 | | 3x^4-96x+4=0 | | 5(x+y)=8y+5 | | 16x-4+4-4x+20x-5=180 | | 18=4(4+m) | | 2t+7=t+8 | | sin(x-30)=0.7 | | -18x+3y=-55 |