If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (sin(2x))(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (2x) (ins * 2x)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: (2ins * x)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Multiply ins * x (2insx)(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (2insx) 2insx(sin(2x)) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (2x) 2insx(ins * 2x) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 2insx(2ins * x) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Multiply ins * x 2insx(2insx) + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (2insx) 2insx * 2insx + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 2 * 2insx * insx + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Multiply 2 * 2 4insx * insx + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Multiply insx * insx 4i2n2s2x2 + (sin(4x))(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (4x) 4i2n2s2x2 + (ins * 4x)(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 4i2n2s2x2 + (4ins * x)(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Multiply ins * x 4i2n2s2x2 + (4insx)(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (4insx) 4i2n2s2x2 + 4insx(sin(4x)) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (4x) 4i2n2s2x2 + 4insx(ins * 4x) + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 4i2n2s2x2 + 4insx(4ins * x) + (sin(6x)) + (sin(6x)) = 2 Multiply ins * x 4i2n2s2x2 + 4insx(4insx) + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (4insx) 4i2n2s2x2 + 4insx * 4insx + (sin(6x)) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 4i2n2s2x2 + 4 * 4insx * insx + (sin(6x)) + (sin(6x)) = 2 Multiply 4 * 4 4i2n2s2x2 + 16insx * insx + (sin(6x)) + (sin(6x)) = 2 Multiply insx * insx 4i2n2s2x2 + 16i2n2s2x2 + (sin(6x)) + (sin(6x)) = 2 Remove parenthesis around (6x) 4i2n2s2x2 + 16i2n2s2x2 + (ins * 6x) + (sin(6x)) = 2 Reorder the terms for easier multiplication: 4i2n2s2x2 + 16i2n2s2x2 + (6ins * x) + (sin(6x)) = 2 Multiply ins * x 4i2n2s2x2 + 16i2n2s2x2 + (6insx) + (sin(6x)) = 2 Remove parenthesis around (6x) 4i2n2s2x2 + 16i2n2s2x2 + (6insx) + (ins * 6x) = 2 Reorder the terms for easier multiplication: 4i2n2s2x2 + 16i2n2s2x2 + (6insx) + (6ins * x) = 2 Multiply ins * x 4i2n2s2x2 + 16i2n2s2x2 + (6insx) + (6insx) = 2 Reorder the terms: (6insx) + (6insx) + 4i2n2s2x2 + 16i2n2s2x2 = 2 Combine like terms: (6insx) + (6insx) = 12insx 12insx + 4i2n2s2x2 + 16i2n2s2x2 = 2 Combine like terms: 4i2n2s2x2 + 16i2n2s2x2 = 20i2n2s2x2 12insx + 20i2n2s2x2 = 2 Solving 12insx + 20i2n2s2x2 = 2 Solving for variable 'i'. Reorder the terms: -2 + 12insx + 20i2n2s2x2 = 2 + -2 Combine like terms: 2 + -2 = 0 -2 + 12insx + 20i2n2s2x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-1 + 6insx + 10i2n2s2x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-1 + 6insx + 10i2n2s2x2)' equal to zero and attempt to solve: Simplifying -1 + 6insx + 10i2n2s2x2 = 0 Solving -1 + 6insx + 10i2n2s2x2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 13=10-(3x+6) | | 72x^4/9x^3 | | 3a=a+3 | | 2100-2/36.2 | | 98-0.5(98-0.5x)=x | | 80x^3=30x^2+35x+40 | | 7p+4=6 | | 7x^2-7x-xy+Y=0 | | 7p=2 | | 5-0.5(5-0.5x)=x | | 6.3-9= | | 5p+7=[4-p] | | 7r+2=5r(r-4) | | 10a+5a=75 | | (2x+9)+43=90 | | 4r+8=6 | | y^2-35=0 | | 6p+14=17 | | 100-x=.5x+(.5x).33 | | 5(2k-m)=ck+5 | | 2xyz^2/2x^2yz^2 | | y=-3x^2+5x | | 36n^3m/9 | | 3*x^4-96x+4=0 | | 3x^4-96x+4=0 | | 5(x+y)=8y+5 | | 16x-4+4-4x+20x-5=180 | | 18=4(4+m) | | 2t+7=t+8 | | sin(x-30)=0.7 | | -18x+3y=-55 | | 14=2(a-3) |