(n+3)(n+3)=51

Simple and best practice solution for (n+3)(n+3)=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+3)(n+3)=51 equation:



(n+3)(n+3)=51
We move all terms to the left:
(n+3)(n+3)-(51)=0
We multiply parentheses ..
(+n^2+3n+3n+9)-51=0
We get rid of parentheses
n^2+3n+3n+9-51=0
We add all the numbers together, and all the variables
n^2+6n-42=0
a = 1; b = 6; c = -42;
Δ = b2-4ac
Δ = 62-4·1·(-42)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{51}}{2*1}=\frac{-6-2\sqrt{51}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{51}}{2*1}=\frac{-6+2\sqrt{51}}{2} $

See similar equations:

| 5(4x-4)+5(5-3x)-2(2x+4)=-3 | | 7(2a+5)=63 | | (7x-9/12*7)/(5x-9/12*5+9)=7/9 | | H(t)=5+8t/7t^2 | | 28=-8+3w | | |5x|-3=37 | | (4y+7)-(5+3y)=12 | | x-1.9+1/x=2-1.9x | | 36+10w+w^2=12 | | q-1.9+1/q=2-1.9q | | 214=143-x | | 2√-1+a+a√-1+a-1=0 | | 288-y=156 | | 210=-u+262 | | -v+6=219 | | 24-w=3w | | 10u=72+u | | 2x(5+3)=14x | | 28=-6v-12+v | | 5m/6-11/12=-3 | | 20=-6v-12=2v | | 28=-6-12=2v | | x^2+0.9x-8.5=0 | | x^2-3x^2-3=0 | | 20=-6v-12+2v | | 5(4x+40)-34(2x-7)=4x(5-9)+87x | | 5x=269 | | 5m=4m+2/3 | | -2=3x+2/2 | | 0=161+30w+w^2 | | 4x=321 | | Y=20+10t-5t^2 |

Equations solver categories