(X-6)(x-6)=10x+(X-4)

Simple and best practice solution for (X-6)(x-6)=10x+(X-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-6)(x-6)=10x+(X-4) equation:



(X-6)(X-6)=10X+(X-4)
We move all terms to the left:
(X-6)(X-6)-(10X+(X-4))=0
We multiply parentheses ..
(+X^2-6X-6X+36)-(10X+(X-4))=0
We calculate terms in parentheses: -(10X+(X-4)), so:
10X+(X-4)
We get rid of parentheses
10X+X-4
We add all the numbers together, and all the variables
11X-4
Back to the equation:
-(11X-4)
We get rid of parentheses
X^2-6X-6X-11X+36+4=0
We add all the numbers together, and all the variables
X^2-23X+40=0
a = 1; b = -23; c = +40;
Δ = b2-4ac
Δ = -232-4·1·40
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-3\sqrt{41}}{2*1}=\frac{23-3\sqrt{41}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+3\sqrt{41}}{2*1}=\frac{23+3\sqrt{41}}{2} $

See similar equations:

| 2(w+7)-5w=32 | | 16π=πr^2 | | -9x+13=157 | | 14≥4x=3x | | 5x±7±4±11±3x=54 | | (3x-7)-(5x-2)=1-4x-5(6-2x) | | 3a–20+6a–2=8a–10+2a | | -41x3=29-18 | | 60+(-2y)+2y=60 | | f=3-(4) | | 4a–12=15 | | 3•x-5=85 | | 5•x+9=44 | | 3^2x+6.3^x-27=0 | | 45+63+(4x-12)=180 | | 25+(2x-1)+110=180 | | 33+(7x+8)=90 | | n^2+201n-11352=0 | | 25=0.003x | | (7x-10)°+(6x+20)°+105°=180 | | 9x^2-48x-7=0 | | 30+2x+40+60=180 | | -108/x=-18 | | (4x+6)+(9x+6)=90 | | 46+(2x+20)+72=180 | | (x+18)+112+(4x)=180 | | 4(x+2)+8=x+46 | | 31=4(3x-2)+3 | | 2(3x+5)=-2x-14 | | 14x+2=7x+9 | | 57+(4x+1)=90 | | (3x)+36=90 |

Equations solver categories