(X+30)+(3x-30)+(1/2x+45)=180

Simple and best practice solution for (X+30)+(3x-30)+(1/2x+45)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+30)+(3x-30)+(1/2x+45)=180 equation:



(X+30)+(3X-30)+(1/2X+45)=180
We move all terms to the left:
(X+30)+(3X-30)+(1/2X+45)-(180)=0
Domain of the equation: 2X+45)!=0
X∈R
We get rid of parentheses
X+3X+1/2X+30-30+45-180=0
We multiply all the terms by the denominator
X*2X+3X*2X+30*2X-30*2X+45*2X-180*2X+1=0
Wy multiply elements
2X^2+6X^2+60X-60X+90X-360X+1=0
We add all the numbers together, and all the variables
8X^2-270X+1=0
a = 8; b = -270; c = +1;
Δ = b2-4ac
Δ = -2702-4·8·1
Δ = 72868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72868}=\sqrt{4*18217}=\sqrt{4}*\sqrt{18217}=2\sqrt{18217}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18217}}{2*8}=\frac{270-2\sqrt{18217}}{16} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18217}}{2*8}=\frac{270+2\sqrt{18217}}{16} $

See similar equations:

| 40t=55(t-1) | | Y=2x-1;(-4 | | 5n+13=2n-2 | | 40t=56(t-1) | | 9c=5(35)-160 | | 40t=70(t-1) | | 40t=64(t-1) | | 5/8x+4=14 | | 40t=65(t-1) | | n-2/5=2/9 | | 4/x+10=16 | | 4/x+10=14 | | 40t=46(t-1) | | 12x=4(5x=12) | | 7=-4x+9;(-5 | | 8x=4(5x=18) | | 3x+16=3x=16 | | 4x+5+2x-5x=3x-7+x | | —3(3x+9)=−2(2x+6) | | 7/4y=3/8 | | (1-2/x)^2-8(1-2/x)+15=0 | | /5y=28/5 | | 3x+1=3x-3+5 | | 4x-7/3x=1 | | 7z^2+27z-4=0 | | 40t=42(t-1) | | x=100/0.75 | | A+(4a-1)=24 | | x-(14+2x)=13+(2x-8) | | 2(3a+3)-4=4 | | 80/4-q/4=400 | | 1/3a+4/5=1/5a-4/5 |

Equations solver categories