(X+1.5)+X=(1.5+X)x

Simple and best practice solution for (X+1.5)+X=(1.5+X)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+1.5)+X=(1.5+X)x equation:



(X+1.5)+X=(1.5+X)X
We move all terms to the left:
(X+1.5)+X-((1.5+X)X)=0
We add all the numbers together, and all the variables
(X+1.5)+X-((X+1.5)X)=0
We add all the numbers together, and all the variables
X+(X+1.5)-((X+1.5)X)=0
We get rid of parentheses
X+X-((X+1.5)X)+1.5=0
We calculate terms in parentheses: -((X+1.5)X), so:
(X+1.5)X
We multiply parentheses
X^2+1.5X
Back to the equation:
-(X^2+1.5X)
We add all the numbers together, and all the variables
2X-(X^2+1.5X)+1.5=0
We get rid of parentheses
-X^2+2X-1.5X+1.5=0
We add all the numbers together, and all the variables
-1X^2+0.5X+1.5=0
a = -1; b = 0.5; c = +1.5;
Δ = b2-4ac
Δ = 0.52-4·(-1)·1.5
Δ = 6.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.5)-\sqrt{6.25}}{2*-1}=\frac{-0.5-\sqrt{6.25}}{-2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.5)+\sqrt{6.25}}{2*-1}=\frac{-0.5+\sqrt{6.25}}{-2} $

See similar equations:

| (X+1.5)+X=(1.5+X)+x | | –26=3y–4(y+5) | | n(11-3n)=-500 | | x+89+x=109 | | y/4=1,3.2 | | 5(x+2)^4(x-3)^4+4(x-3)^3(x+2)^5=0 | | x+109+x+89=x | | 2x+1.5x=800 | | F(x)=2x2+9x+10 | | F(x)=x2-10x+39 | | n^2-8n-56=0 | | 3x^2–4=23 | | 1.8k+0.5k=1.8 | | 4^2n-2=16 | | 25x^2=54 | | −6a​ −(−31)=64 | | 9(x^2-14)-12=-17 | | –4(x+5)=3x–11x–8 | | 2z-14=3z-3 | | 3a+21=2a+8 | | 7(x+3)+16=2(x-5) | | 3a+15=2a+4 | | 2y-2=3y+18 | | 2z+14=3z+15 | | 2z-14=3z+12 | | 1/2-1/x=1/2.5 | | (7x)+(x+7)+(3x+8)=180 | | 21-x=4x | | 1/2x+x+2x=90 | | –3y=–4y+6 | | y+4=33/4 | | 1-3(3x+6)+2x=26 |

Equations solver categories