(Ax2)+125=2059

Simple and best practice solution for (Ax2)+125=2059 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (Ax2)+125=2059 equation:



(A2)+125=2059
We move all terms to the left:
(A2)+125-(2059)=0
We add all the numbers together, and all the variables
A^2-1934=0
a = 1; b = 0; c = -1934;
Δ = b2-4ac
Δ = 02-4·1·(-1934)
Δ = 7736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7736}=\sqrt{4*1934}=\sqrt{4}*\sqrt{1934}=2\sqrt{1934}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1934}}{2*1}=\frac{0-2\sqrt{1934}}{2} =-\frac{2\sqrt{1934}}{2} =-\sqrt{1934} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1934}}{2*1}=\frac{0+2\sqrt{1934}}{2} =\frac{2\sqrt{1934}}{2} =\sqrt{1934} $

See similar equations:

| 6d+12=24 | | 1/2x+2/5=3/5+3/2x | | 3(x+8)=2x-(7-x) | | x+0.5x=7.5 | | 0.82x+4.6=2.4x+1.9 | | 8x3+12x2+6x+65=0 | | 2z+3=-8+4z | | 3x+9=-5x+33 | | {6x;5}={5x;4}+4 | | 3x+9=5x+33 | | 6(1-2x)=4-(4x+3) | | 2.4x+4.6=2.4x+1.9 | | 3(2x+3)=3(3x+5) | | 1/2(14x+4)-4=-3/4(8x-36) | | 7x-2=x+20 | | 9×a-4×6=13 | | 7(x+2)=4x-(3-x) | | 11x-(4x-9)=16 | | (4a+2)(4a+2)=6 | | 6n-47=9-18 | | 2x+26=4x-17 | | 0.3(6+x)=4/9 | | -2(4-x)-(1+x=) | | x+5/11=3 | | 6(4x-3=)-42 | | 1+5x=7-3x | | 4(3x-2)=100 | | 16+a(4)+6-5=0 | | 12.2x+5+4=9 | | 5(3x+2)=40= | | 5(5x+4)=270 | | 2(2x+1)=42 |

Equations solver categories