(9/5)+(1/2)t=7

Simple and best practice solution for (9/5)+(1/2)t=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9/5)+(1/2)t=7 equation:



(9/5)+(1/2)t=7
We move all terms to the left:
(9/5)+(1/2)t-(7)=0
Domain of the equation: 2)t!=0
t!=0/1
t!=0
t∈R
determiningTheFunctionDomain (1/2)t-7+(9/5)=0
We add all the numbers together, and all the variables
(+1/2)t-7+(+9/5)=0
We multiply parentheses
t^2-7+(+9/5)=0
We get rid of parentheses
t^2-7+9/5=0
We multiply all the terms by the denominator
t^2*5+9-7*5=0
We add all the numbers together, and all the variables
t^2*5-26=0
Wy multiply elements
5t^2-26=0
a = 5; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·5·(-26)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*5}=\frac{0-2\sqrt{130}}{10} =-\frac{2\sqrt{130}}{10} =-\frac{\sqrt{130}}{5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*5}=\frac{0+2\sqrt{130}}{10} =\frac{2\sqrt{130}}{10} =\frac{\sqrt{130}}{5} $

See similar equations:

| 3(2x-5)=4(3x+4) | | -83+13x=10 | | 5/7b=5/6 | | 2(5+1)=5h-7 | | 29=3y-16 | | 70-4x=2x+20 | | -7x+6=17-6x | | 2.4b+1=-18 | | 70x-4x=2x+20 | | 2x+1=5(3-2x) | | -8x-2(3x+6)=4-x | | 2×+3y=5 | | 3=11-2k | | 6x-15=13-3x | | 20m−15m−3=17 | | -10-x=6x-59 | | 3=r/2+2 | | 9x+4-6x=8 | | 16y+4=-4 | | x+(1/2-3)=90 | | 4×+6y=10 | | 14c-2c+2c-16=12 | | 5x+4*5=242 | | 1.6x-3-1.1x=14.5 | | 3h2+44h=6279 | | 4/2y-6=-2 | | 45y^2+44y=0 | | 4x-8=7.2+5x | | y=-1.8(212)-32 | | 6x-27=18 | | 2x10=44+8x | | -41=4-2(7x-5)+7x |

Equations solver categories