(8x-4)(3x+17)+(17x-23)=180

Simple and best practice solution for (8x-4)(3x+17)+(17x-23)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-4)(3x+17)+(17x-23)=180 equation:



(8x-4)(3x+17)+(17x-23)=180
We move all terms to the left:
(8x-4)(3x+17)+(17x-23)-(180)=0
We get rid of parentheses
(8x-4)(3x+17)+17x-23-180=0
We multiply parentheses ..
(+24x^2+136x-12x-68)+17x-23-180=0
We add all the numbers together, and all the variables
(+24x^2+136x-12x-68)+17x-203=0
We get rid of parentheses
24x^2+136x-12x+17x-68-203=0
We add all the numbers together, and all the variables
24x^2+141x-271=0
a = 24; b = 141; c = -271;
Δ = b2-4ac
Δ = 1412-4·24·(-271)
Δ = 45897
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(141)-\sqrt{45897}}{2*24}=\frac{-141-\sqrt{45897}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(141)+\sqrt{45897}}{2*24}=\frac{-141+\sqrt{45897}}{48} $

See similar equations:

| 2x-10/4=3× | | x-3.8=14.75 | | (x-6)°=2x°+90° | | 11+8q=3q–19 | | 5x-2/4-2(3x-7)/5=0 | | c=25+18 | | 12x+5=42 | | 4(m-3)+6=26 | | 4x+2x–6=3x+36 | | 14x-2=80 | | 6(y-3)+3=7-(2-y) | | y=-4.3-1.3 | | -16+4s=44 | | (11x–6)+(13x–14)=180 | | –2x–5=–17 | | s+17/5=9 | | 45=3(d-60) | | 34=7-3y | | b+93=100 | | -4f=5^2+4 | | 2x-(3x+5)=2+4(x-8) | | 33=y/3+25 | | 5.2+x=13.6 | | n-93/2=3 | | x-6.2=2.9 | | 7x2+84=0 | | 2h=96 | | -4x-110=64x+2x | | .4b=-10 | | 2m^2-14m+9=0 | | (1/3)y=y-60 | | 12+24/3=z |

Equations solver categories