(84-2x)(93-3x)=180

Simple and best practice solution for (84-2x)(93-3x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (84-2x)(93-3x)=180 equation:



(84-2x)(93-3x)=180
We move all terms to the left:
(84-2x)(93-3x)-(180)=0
We add all the numbers together, and all the variables
(-2x+84)(-3x+93)-180=0
We multiply parentheses ..
(+6x^2-186x-252x+7812)-180=0
We get rid of parentheses
6x^2-186x-252x+7812-180=0
We add all the numbers together, and all the variables
6x^2-438x+7632=0
a = 6; b = -438; c = +7632;
Δ = b2-4ac
Δ = -4382-4·6·7632
Δ = 8676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8676}=\sqrt{36*241}=\sqrt{36}*\sqrt{241}=6\sqrt{241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-438)-6\sqrt{241}}{2*6}=\frac{438-6\sqrt{241}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-438)+6\sqrt{241}}{2*6}=\frac{438+6\sqrt{241}}{12} $

See similar equations:

| 21.80=4g+3.84 | | 57+2n=180 | | 68+59+x=180 | | 40+70+x=180 | | 70+50+x=90 | | 60+65=x=360 | | 20*14*x=11200 | | 7x+10+3x=100 | | 1x+2x+4x+5x=360 | | 3x-4+3x+4+2x+x=360 | | 18-2(x-3)=26x=1 | | 2x-16=75+x | | 4(x+7)=16x=-3 | | 3p-p-7=15 | | 2x+2=-8+3× | | 4x+7+7×=40 | | 100x=0.8 | | 50x^2+100x-1=0 | | 50x^2+50x-100=0 | | 100x-200=50x+400 | | 3x-x*x=36 | | 1.8x-9.6=x | | -(8-x)=-(5+2x) | | -2x-50=30 | | 2/3x-2=26-10/3x | | (Ax2)+125= | | 8(x-1)=3*(4+2x) | | 13+11xX=4 | | 7x-26=3x+108(x-1)=3*(4+2x) | | 2x-1-√x=0 | | 2x-(x-1)=14 | | 2*(x-5)=30 |

Equations solver categories