(8/9)*(3i+27)=(2/9i)+68

Simple and best practice solution for (8/9)*(3i+27)=(2/9i)+68 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8/9)*(3i+27)=(2/9i)+68 equation:



(8/9)(3i+27)=(2/9i)+68
We move all terms to the left:
(8/9)(3i+27)-((2/9i)+68)=0
Domain of the equation: 9)(3i+27)!=0
i∈R
Domain of the equation: 9i)+68)!=0
i!=0/1
i!=0
i∈R
We add all the numbers together, and all the variables
(+8/9)(3i+27)-((+2/9i)+68)=0
We multiply parentheses ..
(+24i^2+8/9*27)-((+2/9i)+68)=0
We calculate fractions
(24i^2+72i)/2187i^2+()/2187i^2=0
We multiply all the terms by the denominator
(24i^2+72i)+()=0
We add all the numbers together, and all the variables
(24i^2+72i)=0
We get rid of parentheses
24i^2+72i=0
a = 24; b = 72; c = 0;
Δ = b2-4ac
Δ = 722-4·24·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-72}{2*24}=\frac{-144}{48} =-3 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+72}{2*24}=\frac{0}{48} =0 $

See similar equations:

| 2x-8(2x-1)=22 | | -35+8b=8(b-5)+5 | | -8=5(y-4)-7y | | (8/9)*(3i+27)=(2/9)i+68 | | 1-2(2x+3)=3-3x(3x+2) | | 5a+3a=-a-2a | | m-4=6.7 | | 2(4x-12)+3x=6x1 | | z^2+22z+21=0 | | 0=3+2x−x^2 | | 67w=10.02 | | 6+29=-5(7x-7) | | x/x+8=5/7 | | -4a-4a=1-6a-4a-11 | | 110=y/3+6 | | 18=-4x+7x | | x+2=-58+7x | | -8n=-144 | | 2(4x-1)=3(×+4) | | 3x-1+2x=137-x | | -4(2x+3)=2 | | 5^x+1=19 | | -9=4x-x | | x+17+2x+5=3x-16 | | 4x-1=-1+3x | | -4(2x+3=2 | | 5x+27=122-4x | | 4p-11-p=2+p-20 | | -3(8p+6)-2(4-20p)=3(4+5p) | | 0.25p=4.0 | | 2(4x-8)+10x=56 | | 4(2x+8)=3x-7 |

Equations solver categories