(8+2x)(4+2x)-32=32

Simple and best practice solution for (8+2x)(4+2x)-32=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8+2x)(4+2x)-32=32 equation:



(8+2x)(4+2x)-32=32
We move all terms to the left:
(8+2x)(4+2x)-32-(32)=0
We add all the numbers together, and all the variables
(2x+8)(2x+4)-32-32=0
We add all the numbers together, and all the variables
(2x+8)(2x+4)-64=0
We multiply parentheses ..
(+4x^2+8x+16x+32)-64=0
We get rid of parentheses
4x^2+8x+16x+32-64=0
We add all the numbers together, and all the variables
4x^2+24x-32=0
a = 4; b = 24; c = -32;
Δ = b2-4ac
Δ = 242-4·4·(-32)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{17}}{2*4}=\frac{-24-8\sqrt{17}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{17}}{2*4}=\frac{-24+8\sqrt{17}}{8} $

See similar equations:

| 2x-9/6=10x-6/4 | | 172+g=400 | | −8=2/3xA) −6 B) −9 C) −12 D) −24 | | -15-6x=-24 | | 0=x-3/8x-5 | | 8+6x+130=180 | | -3v-27=-3(6v+4) | | 2t=t+39 | | r/5=4/2 | | 24x+23=17x+65 | | 8x+2=4x+0 | | 10x=7500 | | x*0.095=1.61 | | 20k+4+33k-9+90=360 | | 9n+5=185 | | 2k-8(2+6k)=16-8k | | 4x+36=5x+5(2+5x) | | 8.49=4.29+3p | | 0.2(3x+1)−0.1x=0.5(x+2)−0.80.23x+1-0.1x=0.5x+2-0.8 | | 3g+11=2g-5 | | 2/5x=10/11 | | 5x=1540 | | 4(3+5p)=132 | | 8h−10=3(6−2h) | | 2z+8=9z-90 | | -27x=-204 | | 9.25x+7=15.5x+12 | | 3.53=b/3 | | 10y−18=2y+54 | | 8x-2/3=81 | | 185=1-8(1+3n) | | 16=^y-3 |

Equations solver categories