(7x-4)(3-x)=3(2x-5)

Simple and best practice solution for (7x-4)(3-x)=3(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-4)(3-x)=3(2x-5) equation:



(7x-4)(3-x)=3(2x-5)
We move all terms to the left:
(7x-4)(3-x)-(3(2x-5))=0
We add all the numbers together, and all the variables
(7x-4)(-1x+3)-(3(2x-5))=0
We multiply parentheses ..
(-7x^2+21x+4x-12)-(3(2x-5))=0
We calculate terms in parentheses: -(3(2x-5)), so:
3(2x-5)
We multiply parentheses
6x-15
Back to the equation:
-(6x-15)
We get rid of parentheses
-7x^2+21x+4x-6x-12+15=0
We add all the numbers together, and all the variables
-7x^2+19x+3=0
a = -7; b = 19; c = +3;
Δ = b2-4ac
Δ = 192-4·(-7)·3
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{445}}{2*-7}=\frac{-19-\sqrt{445}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{445}}{2*-7}=\frac{-19+\sqrt{445}}{-14} $

See similar equations:

| 2(x-14)=36 | | 23x+2+22+8=180 | | 2(x-14=36 | | 4.5x=8,730 | | A=1.885x-3771=25000000000 | | A=1.885*x-3771=25000000000 | | 4x=9x-180 | | -16t^2+96t-96=0 | | 2-4(-5x-2)=-10 | | 2m=142 | | 18x-1+23x+17=18 | | A=1.85*x-3771=25000000000 | | 4(c+9)=2 | | 2/18=r/99 | | 22=11+n | | 180/5=x/3 | | 1.8z-10=-4 | | 180/5=x3 | | -1.3x=14.3 | | 3m=(m-5+12) | | f(0)=7(0)-2 | | 21÷x=100 | | 8/4x-6=4-1/2 | | 180/3=x/5 | | x+7=5x–8 | | 119+9x+2=180 | | 6x−15=2x+19 | | 3(c+5)=39 | | 2x+5+4x-8=3x-2 | | 2x+5+3x-2=4x-8 | | −2/3x–214=27/4 | | 12x^2+3x=41 |

Equations solver categories