If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7t-3)(7t+3)=0
We use the square of the difference formula
49t^2-9=0
a = 49; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·49·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*49}=\frac{-42}{98} =-3/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*49}=\frac{42}{98} =3/7 $
| X=(90-x)+36 | | n(n-1)(n-2)/6=120 | | 3x=1.5=10.5 | | 1.5=5^x | | h=3h-20 | | 5(5s-3)=4(5s+7) | | 8(s-5)=5(7s-3) | | 21=4+5(x+3) | | 1+2019^(x-2)+2020^(x-1)=2021^x | | 1+2019^x-2+2020^x-1=2021^x | | Y=0.5x^ | | 2+7n+8=11 | | 108p-17=10+18p.p | | 18(c-3=162 | | 4x-7=-x+17 | | v-10/3=-7 | | 4x-26=8x-14 | | 12x+39=145 | | 7x+11=6x+13 | | 9x+102=4x | | -0.5x^2+40x+15300=0 | | 10=4x+6x-58 | | 5(z-4)(-z-1)=0 | | 3/5-4/5=n | | 10+2f-7+3f-4+17+2f+11+3f=97 | | 13x2-24x-120=0 | | 3x-6+4=2x | | 2(3e+8)+5e=49 | | 27=6v+3v | | 7-1*0+3/3=a | | 12x=55+8x=25 | | 3x+8=2x+15=5x-6 |