(7n-7)(n-7)=51

Simple and best practice solution for (7n-7)(n-7)=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7n-7)(n-7)=51 equation:



(7n-7)(n-7)=51
We move all terms to the left:
(7n-7)(n-7)-(51)=0
We multiply parentheses ..
(+7n^2-49n-7n+49)-51=0
We get rid of parentheses
7n^2-49n-7n+49-51=0
We add all the numbers together, and all the variables
7n^2-56n-2=0
a = 7; b = -56; c = -2;
Δ = b2-4ac
Δ = -562-4·7·(-2)
Δ = 3192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3192}=\sqrt{4*798}=\sqrt{4}*\sqrt{798}=2\sqrt{798}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-2\sqrt{798}}{2*7}=\frac{56-2\sqrt{798}}{14} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+2\sqrt{798}}{2*7}=\frac{56+2\sqrt{798}}{14} $

See similar equations:

| 3+4x3=15 | | x^2+96x-3168=0 | | 9w−7=4w−17 | | 1/4=2/3b | | 811=(0.04x^2)+(16x) | | 3(x-2)-(x-8)=3(x+8) | | 7(d+5)=49 | | x^2-96x-2280=0 | | -3h=-42 | | 811=0.04x^2+16x | | 15=3-3v | | 8=17+m | | 3x=251 | | 3^x×3^x=3^4 | | |5x+10|=40 | | 2x2+14x+10=0 | | 9x2-27x+14=0 | | 3^(x+2)-3^x=72 | | 3(5-h-2(h-2)=-1 | | (w-4)^2=2w^2-7w+14 | | (w-4)=2w^2-7w+14 | | (n-5)7+(n+3)6=22 | | (n-5)7=(n+3)6=22 | | n−5/6+n+3/7=11/21 | | 8×y=64 | | 2=46-3x | | -3.3m=11 | | 4(x+2)=-2(x-4) | | 7n-5=10n-7 | | x2−94=−x−4 | | X²+40x-150=0 | | (3x)(x)/2=24 |

Equations solver categories