If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7k/8)-(3/4)-(5k/16)=(3/8)
We move all terms to the left:
(7k/8)-(3/4)-(5k/16)-((3/8))=0
We add all the numbers together, and all the variables
(+7k/8)-(+5k/16)-(+3/4)-((+3/8))=0
We get rid of parentheses
7k/8-5k/16-3/4-((+3/8))=0
We calculate fractions
(-5120k^2)/()+1792k/()+()/()+()/()=0
We add all the numbers together, and all the variables
(-5120k^2)/()+1792k/()+2=0
We multiply all the terms by the denominator
(-5120k^2)+1792k+2*()=0
We add all the numbers together, and all the variables
(-5120k^2)+1792k=0
We get rid of parentheses
-5120k^2+1792k=0
a = -5120; b = 1792; c = 0;
Δ = b2-4ac
Δ = 17922-4·(-5120)·0
Δ = 3211264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3211264}=1792$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1792)-1792}{2*-5120}=\frac{-3584}{-10240} =7/20 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1792)+1792}{2*-5120}=\frac{0}{-10240} =0 $
| 12=-8+y | | 3p^2+3p=23 | | 12=29+y | | d/4-7=39 | | (7k/8)-(3/4)-(5k/16)=(3/8 | | 8x7+6=62 | | -105h÷30=-14 | | 40/5=p | | 7x+1/2=2/3x-6 | | ⋅-105h÷30=-14 | | 5x+3-7x-8=-2(x+3)+1 | | -13=7s-5 | | 5c=25 | | –5−6j=–7j+5 | | d÷4-7=39* | | 12=-32+y | | 14x-7=6x+9 | | p=4p−6+2p+2=10−p | | 8x6=62 | | 0=x^2+24x+60 | | 900-f4=580 | | 2y+9÷3=17 | | 8×n+6=62 | | 2+4m=4m+2 | | 4m−7=3m | | d÷4-7=39 | | 12x2+48x+45=0 | | ŷ=–0.711x+91.785 | | n-56=39 | | –2j+3=7−2j | | 4x=-x-5 | | 2/3x+1/6=3/3x-5/6 |