(7/x-4)+2=3/3x-12

Simple and best practice solution for (7/x-4)+2=3/3x-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/x-4)+2=3/3x-12 equation:



(7/x-4)+2=3/3x-12
We move all terms to the left:
(7/x-4)+2-(3/3x-12)=0
Domain of the equation: x-4)!=0
x∈R
Domain of the equation: 3x-12)!=0
x∈R
We get rid of parentheses
7/x-3/3x-4+12+2=0
We calculate fractions
21x/3x^2+(-3x)/3x^2-4+12+2=0
We add all the numbers together, and all the variables
21x/3x^2+(-3x)/3x^2+10=0
We multiply all the terms by the denominator
21x+(-3x)+10*3x^2=0
Wy multiply elements
30x^2+21x+(-3x)=0
We get rid of parentheses
30x^2+21x-3x=0
We add all the numbers together, and all the variables
30x^2+18x=0
a = 30; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·30·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*30}=\frac{-36}{60} =-3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*30}=\frac{0}{60} =0 $

See similar equations:

| 5k^2+48k-20=0 | | 7(4-6b)+6(5b+1)=34 | | -x-4x-7=2x-4x+1 | | -4p-2(4-5p)=2(p-6)-36 | | -4.8y=-2.4 | | -90+5x=540 | | 2x-(5-x=5/2 | | (x-1)(x-2)(x-3)(x-4)-1=0 | | 5p=4p+31 | | 31.4+2x=180 | | 56=15v-7v | | 6(2r-5)=-12 | | 2-5x=-11 | | 31+7d=-12 | | 12y+49=145 | | (12x+15)=75 | | 44-3k=56 | | 4c=2c-30 | | (6y-27)=105 | | +3g+9=15 | | -t=9+8t | | 10x+5x=5x+10 | | -6h=-7h+9 | | 52=3y+16 | | (x-15)=52 | | 49=-5d+9 | | 2=x/4-11 | | 11y+39=83 | | 3x=4x+2.8 | | 8x+0.2=32.2 | | 180x^2-120=0 | | 10x-3x+87=10x+42 |

Equations solver categories