If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/5x+5)-(3/10x+10)=11/120
We move all terms to the left:
(7/5x+5)-(3/10x+10)-(11/120)=0
Domain of the equation: 5x+5)!=0
x∈R
Domain of the equation: 10x+10)!=0We add all the numbers together, and all the variables
x∈R
(7/5x+5)-(3/10x+10)-(+11/120)=0
We get rid of parentheses
7/5x-3/10x+5-10-11/120=0
We calculate fractions
(-550x^2)/6000x^2+8400x/6000x^2+(-1800x)/6000x^2+5-10=0
We add all the numbers together, and all the variables
(-550x^2)/6000x^2+8400x/6000x^2+(-1800x)/6000x^2-5=0
We multiply all the terms by the denominator
(-550x^2)+8400x+(-1800x)-5*6000x^2=0
Wy multiply elements
(-550x^2)-30000x^2+8400x+(-1800x)=0
We get rid of parentheses
-550x^2-30000x^2+8400x-1800x=0
We add all the numbers together, and all the variables
-30550x^2+6600x=0
a = -30550; b = 6600; c = 0;
Δ = b2-4ac
Δ = 66002-4·(-30550)·0
Δ = 43560000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{43560000}=6600$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6600)-6600}{2*-30550}=\frac{-13200}{-61100} =132/611 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6600)+6600}{2*-30550}=\frac{0}{-61100} =0 $
| (6x-6)/6=40 | | 18d-19-4d=-17d+12 | | 5v+8=78 | | 4x-(3x+3)-2=8x+6-(12×-3) | | 2(x-5=2x-10 | | 12q+q+5q-10q=8 | | 10+6x=10+6 | | (x+1)^2-36=0(x+1)2−36=0 | | 8+8=10+x | | 10b^2-7=-14 | | 1.9x-7=5x+5 | | 7y=52 | | 1/2a+2/3(30)=59 | | -5/3-1/5v=-1/2 | | 7x-5=9x | | 8x+1-3=8x+1 | | 7x-40=2x+130 | | -8x+40/x=3 | | 8-4-2=x | | 8+6=10+x | | 20t-16t=8 | | 4z-4z+3z=12 | | 5w^2+4-w-6=0 | | 6*3=2x+4 | | -7m+12=-m-4m | | 13h−12h=6 | | 360=28+36+y | | z-z+4z+2z=18 | | 3.2h=12 | | 14+x2+9x=0 | | 4n-5=5n | | 4x2=-22 |