If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/3x)+(9/6x)=50/9
We move all terms to the left:
(7/3x)+(9/6x)-(50/9)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+7/3x)+(+9/6x)-(+50/9)=0
We get rid of parentheses
7/3x+9/6x-50/9=0
We calculate fractions
(-5400x^2)/1458x^2+3402x/1458x^2+2187x/1458x^2=0
We multiply all the terms by the denominator
(-5400x^2)+3402x+2187x=0
We add all the numbers together, and all the variables
(-5400x^2)+5589x=0
We get rid of parentheses
-5400x^2+5589x=0
a = -5400; b = 5589; c = 0;
Δ = b2-4ac
Δ = 55892-4·(-5400)·0
Δ = 31236921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{31236921}=5589$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5589)-5589}{2*-5400}=\frac{-11178}{-10800} =1+7/200 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5589)+5589}{2*-5400}=\frac{0}{-10800} =0 $
| (p+3)^2=16 | | r+-48=-621 | | 0=g^2-17g+72 | | 31x=90 | | 10x+3=127 | | -6(x+4)+3x+7=8x+12 | | 4v-v=21 | | (c+4)^2=-9 | | 4(4-6b)=-15+7b | | 5(3j+2)=4j+32 | | 3^2x=7^x | | 3/4-j=1/2 | | 3x+8+55=90 | | 6y-73=2y-21 | | -7(4-x)=21 | | 6+x+4=2x3 | | X=(5y/y^2-7y)-4/2y-14)+(9/y) | | -6−2c=-4c | | -7(4-x)=2 | | s=3s-56 | | X÷(27-x)=4÷5 | | w-12=6(1 | | 5c=9c-72 | | 7k+12=4k-9 | | n2+n=30 | | 8=4(3c5) | | 5x+1+79=180 | | 12-2(3x-7)=16+9x | | 10+k=3k−10 | | 6x-57=5x-36 | | 6m=4.75=49.75 | | (x÷3)+25=46 |