If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7+u)(4u-2)=0
We add all the numbers together, and all the variables
(u+7)(4u-2)=0
We multiply parentheses ..
(+4u^2-2u+28u-14)=0
We get rid of parentheses
4u^2-2u+28u-14=0
We add all the numbers together, and all the variables
4u^2+26u-14=0
a = 4; b = 26; c = -14;
Δ = b2-4ac
Δ = 262-4·4·(-14)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-30}{2*4}=\frac{-56}{8} =-7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+30}{2*4}=\frac{4}{8} =1/2 $
| 508=3x | | (x+2)/8=(5x+4)/32 | | 31/4x-34=91/18 | | M-{m-1}/2=1-{m-2}/3 | | 9+x/19=-11 | | 2x+3=508 | | 15=0.9n | | x+3=508 | | 100+50x=40x | | 2^(x+9)=6 | | p=2(600)*2(18) | | 15=-((44(10^2))/(x^2))+16 | | 10=-((44(15^2))/(x^2))+21 | | 2/p-1/2p=p^2+1/p^2+1 | | 29+9n=14 | | 3^x=80 | | 10=(-9900/(x^2))+21 | | 5=10^4/y^2 | | x3-4x2+13x+50=0 | | x²-5=36x | | x3+4x2+13x+50=0 | | 3b-1=b-4 | | 2s-5=73 | | 10=(9900/(x^2))+21 | | 15^(-3y)=5 | | 859=-91+2b | | -3x-15=-8x+5 | | 859=91-2b | | 2/x-4+1=3/3x-12 | | 59=2x-15 | | 2+1x=4x | | 10/x+3=1 |