2/x-4+1=3/3x-12

Simple and best practice solution for 2/x-4+1=3/3x-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x-4+1=3/3x-12 equation:



2/x-4+1=3/3x-12
We move all terms to the left:
2/x-4+1-(3/3x-12)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x-12)!=0
x∈R
We add all the numbers together, and all the variables
2/x-(3/3x-12)-3=0
We get rid of parentheses
2/x-3/3x+12-3=0
We calculate fractions
6x/3x^2+(-3x)/3x^2+12-3=0
We add all the numbers together, and all the variables
6x/3x^2+(-3x)/3x^2+9=0
We multiply all the terms by the denominator
6x+(-3x)+9*3x^2=0
Wy multiply elements
27x^2+6x+(-3x)=0
We get rid of parentheses
27x^2+6x-3x=0
We add all the numbers together, and all the variables
27x^2+3x=0
a = 27; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·27·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*27}=\frac{-6}{54} =-1/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*27}=\frac{0}{54} =0 $

See similar equations:

| 59=2x-15 | | 2+1x=4x | | 10/x+3=1 | | 5a+3=26 | | 5/y=12/y-7 | | (x+5)=26 | | (5x-10)=20 | | (7)/(2x-10)=0 | | -5y+16=-4 | | 9x8-4x-5=3x-11 | | -87x-19=56-23x | | 2.2=z-1,1 | | -1/2=-1/3y-2/5 | | 0.3b=0,9 | | 9y2+54y-243=0 | | 3^(x+1)=15 | | 2+7c-4c^=3c+4 | | 3/5x+1=2/3-3x | | –x+8+3x=x-6 | | 12x+3=72 | | 199-v=283 | | 161=-w+110 | | -7(w+1)=7w+35 | | 3^(x-1)=23 | | 5x+45+x+15=180 | | (2/3)(6x+12)=(2/3)*6x+(2/3)*12 | | x-1/5+1/5=-x/6 | | √(x-4=5 | | √x-4=5 | | 25y^2=50 | | 5y/3=35 | | 2x=12x+5 |

Equations solver categories