(7+35x)(6+24x)=13

Simple and best practice solution for (7+35x)(6+24x)=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7+35x)(6+24x)=13 equation:



(7+35x)(6+24x)=13
We move all terms to the left:
(7+35x)(6+24x)-(13)=0
We add all the numbers together, and all the variables
(35x+7)(24x+6)-13=0
We multiply parentheses ..
(+840x^2+210x+168x+42)-13=0
We get rid of parentheses
840x^2+210x+168x+42-13=0
We add all the numbers together, and all the variables
840x^2+378x+29=0
a = 840; b = 378; c = +29;
Δ = b2-4ac
Δ = 3782-4·840·29
Δ = 45444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45444}=\sqrt{4*11361}=\sqrt{4}*\sqrt{11361}=2\sqrt{11361}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(378)-2\sqrt{11361}}{2*840}=\frac{-378-2\sqrt{11361}}{1680} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(378)+2\sqrt{11361}}{2*840}=\frac{-378+2\sqrt{11361}}{1680} $

See similar equations:

| 8x-2-4=7 | | 3y-4=32-7 | | 12g-8=10g | | 8.2x+(-1.8x)=x | | 18k-14k=8 | | (x+3)^=44 | | 2(v+5)=14 | | x-7=5/3 | | 9p+15=8+4p | | 26=3w+5 | | 2(3×+1)=4x+2 | | 9=1-q | | (3x-5)(5x+20)=135 | | 9/2=3/2(n-2) | | 9x-17=-2x+16 | | 11r-10r=10 | | 12v+10v+1=18 | | 5x-7x-9=2x+5-9 | | 4(3x-1)=94 | | 6h-5h-1=10 | | 9x-1=-x+4 | | 9c+6=-2c-27 | | -6-11y=-8+7y+20 | | 6x-2=8x-20 | | -20=5+3x | | 320=x+(x×1/4) | | 2=c-6/2 | | 2+-2y=6 | | –5u+6=41 | | 10q-5=7q-20 | | -10g+3g-7=14 | | 13+9x=0 |

Equations solver categories