(7(x*x)-7x)/(x-1)=0

Simple and best practice solution for (7(x*x)-7x)/(x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7(x*x)-7x)/(x-1)=0 equation:



(7(x*x)-7x)/(x-1)=0
Domain of the equation: (x-1)!=0
We move all terms containing x to the left, all other terms to the right
x!=1
x∈R
We add all the numbers together, and all the variables
(7(+x*x)-7x)/(x-1)=0
We multiply all the terms by the denominator
(7(+x*x)-7x)=0
We calculate terms in parentheses: +(7(+x*x)-7x), so:
7(+x*x)-7x
We add all the numbers together, and all the variables
-7x+7(+x*x)
We multiply parentheses
7x^2-7x
Back to the equation:
+(7x^2-7x)
We get rid of parentheses
7x^2-7x=0
a = 7; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·7·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*7}=\frac{0}{14} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*7}=\frac{14}{14} =1 $

See similar equations:

| -5-1=3a-33 | | 2x-4+2x-4=57 | | 69=7x+5x+9. | | 2y-4*2=24 | | 6x-10x+20=12 | | 3=(v-4)+4(2v-9) | | 4=n+29/10 | | 8x+9=3x+36 | | -9x+11=-9x-11 | | 101-u=225 | | 3/7x+8=2 | | n/4.2=48 | | 2x+x+9=3x+9 | | 6k=20-4-2k | | (e+4)×2=18 | | -1/2(-4+2r)=-6-4r | | −16−f,f=15 | | 80g-g-5g+6g=800 | | f+f+f-5f+4f-14=6 | | 3y-60=y | | 5m=26 | | 35d-15d+20d-20=60 | | 7x^2-7x/x-1=0 | | x3-128x=0 | | 32x+2,768-25=70(40x+58) | | (-7m)+6=13 | | 11-9c=11 | | 6m+8.2=8.8m–2.3 | | 17.9+5p=23.65 | | 20c+18/9c+3c=75 | | 9=3(2x+3)+3 | | -15n16=86-29n |

Equations solver categories