(6y-10)(6y+10)=180

Simple and best practice solution for (6y-10)(6y+10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6y-10)(6y+10)=180 equation:



(6y-10)(6y+10)=180
We move all terms to the left:
(6y-10)(6y+10)-(180)=0
We use the square of the difference formula
36y^2-100-180=0
We add all the numbers together, and all the variables
36y^2-280=0
a = 36; b = 0; c = -280;
Δ = b2-4ac
Δ = 02-4·36·(-280)
Δ = 40320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40320}=\sqrt{576*70}=\sqrt{576}*\sqrt{70}=24\sqrt{70}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{70}}{2*36}=\frac{0-24\sqrt{70}}{72} =-\frac{24\sqrt{70}}{72} =-\frac{\sqrt{70}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{70}}{2*36}=\frac{0+24\sqrt{70}}{72} =\frac{24\sqrt{70}}{72} =\frac{\sqrt{70}}{3} $

See similar equations:

| z-104=-319 | | (2x+7)+3x=4x+9 | | 5f-3=4(f+2)+f | | 19=5x+6-3x | | 11c+20=12c | | -4x+3x+5=2x-3 | | 9+5x+6x=-7-5x+8x | | 7+1-8n=-6n-10 | | x^2+5=45 | | j-6=-2j+3 | | 3x+12=76 | | -13q-9=9-12q | | 7/3x-1=-4 | | -6n-9=27 | | x-13/4=5/14-x+5/7 | | 3-9z=5-10z | | (4x-4)+2x=4x | | 2=x+33 | | -4p-6(p+4)=-84 | | x+10+3x-10=180 | | 3(y-4)+2(y+3)=4 | | 8x-7+4=5 | | -3-5w=-w-5w-10 | | 2x+5=21x= | | [-16=n+3n | | -8x+5+7x=-8 | | 11+4=3x-4 | | 7d-8=9d | | 6-(-5y)=36 | | -22x=29-7x | | 8x-24=216 | | 4/7x+8=-12 |

Equations solver categories