(6x-5)(x+1)=(2x-7)(2x-1)

Simple and best practice solution for (6x-5)(x+1)=(2x-7)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-5)(x+1)=(2x-7)(2x-1) equation:



(6x-5)(x+1)=(2x-7)(2x-1)
We move all terms to the left:
(6x-5)(x+1)-((2x-7)(2x-1))=0
We multiply parentheses ..
(+6x^2+6x-5x-5)-((2x-7)(2x-1))=0
We calculate terms in parentheses: -((2x-7)(2x-1)), so:
(2x-7)(2x-1)
We multiply parentheses ..
(+4x^2-2x-14x+7)
We get rid of parentheses
4x^2-2x-14x+7
We add all the numbers together, and all the variables
4x^2-16x+7
Back to the equation:
-(4x^2-16x+7)
We get rid of parentheses
6x^2-4x^2+6x-5x+16x-5-7=0
We add all the numbers together, and all the variables
2x^2+17x-12=0
a = 2; b = 17; c = -12;
Δ = b2-4ac
Δ = 172-4·2·(-12)
Δ = 385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{385}}{2*2}=\frac{-17-\sqrt{385}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{385}}{2*2}=\frac{-17+\sqrt{385}}{4} $

See similar equations:

| 2x-20=80+4x | | 21=3x-8 | | 35=x-12 | | c/39-7=-8 | | 26=-9/5y | | -8-(-2n)=3n-6+5 | | 2(x-5)=3(x-6) | | 15=8-s | | 3x-48=60-6x | | 0.5+9=y | | 12x=-28 | | -3(6+1)-9=-4(3x-2) | | 6(m+1)=9(m-2) | | 3(4x-2)²=27 | | X-2-6x=-10-4x | | 4/9=6n | | 5x+17+3x-4=180 | | –5d−–3d=16 | | 6(1+2n)+5(n-5)=-53 | | 10(5+3)+2x=200 | | -8w+46=-6(w-8) | | -9=2(x+3)+3x | | 3x+6x-99=180 | | 15.75=3-7x | | 6x-27=9+3x | | |3x-6|+4=25 | | 6(1+2n)+5(n-5)=-52 | | (5y+1)=21 | | -(4b+2)=2(b-1) | | 5x+30=10x-45 | | 5+7x+5x=125 | | 2=3i/i |

Equations solver categories