(6x-5)(6x+5)=180

Simple and best practice solution for (6x-5)(6x+5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-5)(6x+5)=180 equation:



(6x-5)(6x+5)=180
We move all terms to the left:
(6x-5)(6x+5)-(180)=0
We use the square of the difference formula
36x^2-25-180=0
We add all the numbers together, and all the variables
36x^2-205=0
a = 36; b = 0; c = -205;
Δ = b2-4ac
Δ = 02-4·36·(-205)
Δ = 29520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29520}=\sqrt{144*205}=\sqrt{144}*\sqrt{205}=12\sqrt{205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{205}}{2*36}=\frac{0-12\sqrt{205}}{72} =-\frac{12\sqrt{205}}{72} =-\frac{\sqrt{205}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{205}}{2*36}=\frac{0+12\sqrt{205}}{72} =\frac{12\sqrt{205}}{72} =\frac{\sqrt{205}}{6} $

See similar equations:

| 7t-3t=-6+t | | (7p-4)44=180 | | 17x-99x+4)=3x-26 | | 12+28=-5(2x-8) | | -8x-5-4x=-9x+7 | | n+2-n=2 | | 3/4x-13/12=7/2 | | 15+2.5x=10+2.75 | | 2y+6+3=4y-11 | | 6+6=-4+8x | | 31=4p+7 | | (x-5)(x+7)=13 | | -19.9=v/7-2.4 | | 2(x+6)=2x=12 | | 1+6x=6(6x+6)-5 | | 2g+3=3-2g | | 2(x-4)=4-(x+6) | | 3+a/2=7 | | (0.2*x^2)+10*x=3025 | | |2x+5|=5x+1 | | 6-z/4=8+z/2 | | 5/6y-3/4=17/4 | | 4+0.75*20x=7 | | x2=22932 | | -7s+3=-8s+7 | | 8x-50=12x-2 | | 1.05=−7n n= | | (7x+10)=(7x-26)=180 | | 24-(y+2)=5y+10 | | 2b-24=-2+7(4b+8) | | 5(x+5)=14+2x | | 8(v+3)=4v+12 |

Equations solver categories