(6x-2x+5)=(2x2-7x-11)

Simple and best practice solution for (6x-2x+5)=(2x2-7x-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-2x+5)=(2x2-7x-11) equation:



(6x-2x+5)=(2x^2-7x-11)
We move all terms to the left:
(6x-2x+5)-((2x^2-7x-11))=0
We add all the numbers together, and all the variables
(4x+5)-((2x^2-7x-11))=0
We get rid of parentheses
4x-((2x^2-7x-11))+5=0
We calculate terms in parentheses: -((2x^2-7x-11)), so:
(2x^2-7x-11)
We get rid of parentheses
2x^2-7x-11
Back to the equation:
-(2x^2-7x-11)
We get rid of parentheses
-2x^2+4x+7x+11+5=0
We add all the numbers together, and all the variables
-2x^2+11x+16=0
a = -2; b = 11; c = +16;
Δ = b2-4ac
Δ = 112-4·(-2)·16
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{249}}{2*-2}=\frac{-11-\sqrt{249}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{249}}{2*-2}=\frac{-11+\sqrt{249}}{-4} $

See similar equations:

| 25x+13=-35 | | 5x-9=11x+9 | | 0.09x+0.1(x+400)=116 | | 8x+35=x+42 | | 12x+11=14x+3 | | -32-8x=48-3x | | f(40)=(10)f | | 7x-60=x+18 | | 5(4-x)+3x=32+2 | | 4u+18=15u-3u+64 | | -5x=2.5=-3x=1.1 | | 2.17=0.35r | | 2|4y-1|-1=5 | | 16^-7x=4^5x+3 | | 2x-5=(8x-(-4x)) | | -163-x=10x+123 | | 9d+12-3d-2=38 | | 3x-(x*x*x)=2 | | -5(5-7m)=7m+31 | | 4-5x=-178 | | 2x+6x=17 | | 22+2x=36+6+x | | 2y/3=-2 | | 5(y-6)=4(y-7) | | x+21=-2(-2-3x)-3 | | 8x+20=3X+35 | | 6x-25=x+40 | | 19(v+3)-3v=4(4v+2)-15 | | 4c-12+6c-24=-18 | | 134x-(x*2)=84 | | -81=-3(-1-2y) | | -6(-4b+4)=24+6b |

Equations solver categories