(6/2x-1)=4x-1

Simple and best practice solution for (6/2x-1)=4x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/2x-1)=4x-1 equation:



(6/2x-1)=4x-1
We move all terms to the left:
(6/2x-1)-(4x-1)=0
Domain of the equation: 2x-1)!=0
x∈R
We get rid of parentheses
6/2x-4x-1+1=0
We multiply all the terms by the denominator
-4x*2x-1*2x+1*2x+6=0
Wy multiply elements
-8x^2-2x+2x+6=0
We add all the numbers together, and all the variables
-8x^2+6=0
a = -8; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-8)·6
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-8}=\frac{0-8\sqrt{3}}{-16} =-\frac{8\sqrt{3}}{-16} =-\frac{\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-8}=\frac{0+8\sqrt{3}}{-16} =\frac{8\sqrt{3}}{-16} =\frac{\sqrt{3}}{-2} $

See similar equations:

| 2x^2+11x+75=0 | | F(x+1)=4x^2+5x+6 | | 7x−7=2x−1 | | x^3-2x^2-3x+20=0. | | 15-(3x+5x)=21 | | 5=3(x+2)/6 | | 60+60x0+1=x | | 2X+(2x-30)=0 | | 8.4.k+9.5=(36-4)k-(2.5) | | X+(2x-30)=0 | | 5^x+1-5^x-1=24 | | x^2+11x-2027=0 | | 7+9x/2x=-10 | | 9x^2-10x-175=0 | | (x-2)+(x-1)+x+(x+1(x+2)=5x | | x^2+11x-2017=0 | | x-0.6=10 | | X2+15x+2700=0 | | -63=-3x9 | | x+10/9=-2 | | (((2x)-1)/3)+(((3x)-1)/7)=5 | | (X+10)+(y-10)=0 | | 7x+5x+9/11x=27 | | x-4/6=-4 | | ((x-1)/2)+((x-1)/3)+((x-1)/4)=0 | | t/3-2=16 | | a/3+4=14 | | 9p+3p=11 | | 37=4x=9-8x | | 2x+4(3x+5)=50 | | 780+n=700+80+n | | x^2-4x-30=15 |

Equations solver categories