(5x+9)/(2x-5)=x

Simple and best practice solution for (5x+9)/(2x-5)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+9)/(2x-5)=x equation:



(5x+9)/(2x-5)=x
We move all terms to the left:
(5x+9)/(2x-5)-(x)=0
Domain of the equation: (2x-5)!=0
We move all terms containing x to the left, all other terms to the right
2x!=5
x!=5/2
x!=2+1/2
x∈R
We add all the numbers together, and all the variables
-1x+(5x+9)/(2x-5)=0
We multiply all the terms by the denominator
-1x*(2x-5)+(5x+9)=0
We multiply parentheses
-2x^2+5x+(5x+9)=0
We get rid of parentheses
-2x^2+5x+5x+9=0
We add all the numbers together, and all the variables
-2x^2+10x+9=0
a = -2; b = 10; c = +9;
Δ = b2-4ac
Δ = 102-4·(-2)·9
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{43}}{2*-2}=\frac{-10-2\sqrt{43}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{43}}{2*-2}=\frac{-10+2\sqrt{43}}{-4} $

See similar equations:

| 3(2x-5)=6-x | | 5x+10=8x+19 | | -3(4w-5)=51 | | Y=-5/6(x)+5/6 | | 4.5k+9.5k=-23.5 | | -5x-2(-7-4x)=-2(3x-4) | | 32-5x=8(4-7x) | | x-5x+12=-4 | | 5x3= | | -5+h/4=-1 | | 5-3(x-2)=4(2x+3) | | 4x+5(7x)=32 | | 4x-2x=-7 | | 2x+4x=108 | | (3y-7)(9+4y)=(6y-1)(5+2y) | | 12y+2y÷8=4 | | 4(3y)+2(y)÷2×4=4 | | 20x^2-4x=-4 | | 2x−5=3x−8 | | 200=4.9*t^2 | | 3y÷2+y÷4=4 | | 10y^2+19y=2 | | 2(2x-1)=4(1-x) | | 20-(2x-5)=2520-(2x-5) | | –20t−8t−-10t=18 | | 2u+3u+3u-3u=20 | | -(11/15)x=3 | | 20p-19p+p-p=10 | | 8s-6s+4s-6s+3s=15 | | -12-5w=-9(6w+7) | | 8s−6s+4s−6s+3s=15 | | 7j-3j-4j+4j=12 |

Equations solver categories