(5/9)c+32=68

Simple and best practice solution for (5/9)c+32=68 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/9)c+32=68 equation:



(5/9)c+32=68
We move all terms to the left:
(5/9)c+32-(68)=0
Domain of the equation: 9)c!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
(+5/9)c+32-68=0
We add all the numbers together, and all the variables
(+5/9)c-36=0
We multiply parentheses
5c^2-36=0
a = 5; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·5·(-36)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*5}=\frac{0-12\sqrt{5}}{10} =-\frac{12\sqrt{5}}{10} =-\frac{6\sqrt{5}}{5} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*5}=\frac{0+12\sqrt{5}}{10} =\frac{12\sqrt{5}}{10} =\frac{6\sqrt{5}}{5} $

See similar equations:

| 3a^2+6a+1=0 | | 2n/7-6-n=5n | | 4w=14/2 | | (2/3)*1+(2/3)*n=-0.5n | | 42=3.5b | | 4t3-3t2-1=0 | | h(50)=6 | | x*(2x-4)=576 | | h(6)=50 | | 2a/14=7 | | 5(8-y)=-y-4) | | x+77+18x-49=180 | | x+74+x+94=180 | | x+63+x+61=180 | | 217+x=975 | | 65+x+48=180 | | 217x=975 | | 96+x+58=180 | | x+33+x+67=180 | | x+75+x+57=180 | | 625x=100 | | 95+x+23=180 | | x+88+78=180 | | x/14=100 | | 14/x=100 | | 4f=40f= | | 0.45x(180-x)=0.3(180) | | a/3+8=6 | | 6x-15=6x+2 | | -3=5m-3 | | 2c+27=65 | | 180p-270=300p+270 |

Equations solver categories