(5/9)(y+3)=40

Simple and best practice solution for (5/9)(y+3)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/9)(y+3)=40 equation:



(5/9)(y+3)=40
We move all terms to the left:
(5/9)(y+3)-(40)=0
Domain of the equation: 9)(y+3)!=0
y∈R
We add all the numbers together, and all the variables
(+5/9)(y+3)-40=0
We multiply parentheses ..
(+5y^2+5/9*3)-40=0
We multiply all the terms by the denominator
(+5y^2+5-40*9*3)=0
We get rid of parentheses
5y^2+5-40*9*3=0
We add all the numbers together, and all the variables
5y^2-1075=0
a = 5; b = 0; c = -1075;
Δ = b2-4ac
Δ = 02-4·5·(-1075)
Δ = 21500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21500}=\sqrt{100*215}=\sqrt{100}*\sqrt{215}=10\sqrt{215}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{215}}{2*5}=\frac{0-10\sqrt{215}}{10} =-\frac{10\sqrt{215}}{10} =-\sqrt{215} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{215}}{2*5}=\frac{0+10\sqrt{215}}{10} =\frac{10\sqrt{215}}{10} =\sqrt{215} $

See similar equations:

| 162−21​ n=3n+1 | | 2p=p+16 | | 13x+26=2x-7 | | 3x-15+2x-10+135=180 | | 2+3(n-9)n=15 | | 39-11x=20+8x | | 6s=s+75 | | 6x+-2+8x+10=8 | | 5w-3/5=-3/2w-7/2 | | 42-x=48-7x | | .6x+2=26 | | 3(k-6)-(2k-5)=7 | | 2+3x=8+3x | | -3(x-26)=-200 | | -48-9x=-30-3x | | x+x+3+2*x-5=78 | | -12u=-132 | | 5x-1+8x-1=180 | | -4x+11+5x=6+x+5 | | 5-9x=6-8x | | 15x-35=5x-17 | | 10.75n=100 | | .9x=6+.8 | | 90=(x-15) | | -9f=90 | | 0.50x+0.25(50)=33.5 | | -(-3x+14)=-12x+74 | | (n+7)=(3n-47) | | 4v=v+63 | | 5=3(x+5)-5x | | a=1/2(9)(16) | | 9t=-108 |

Equations solver categories