(5/8)x+(1/5)x=66

Simple and best practice solution for (5/8)x+(1/5)x=66 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/8)x+(1/5)x=66 equation:



(5/8)x+(1/5)x=66
We move all terms to the left:
(5/8)x+(1/5)x-(66)=0
Domain of the equation: 8)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/8)x+(+1/5)x-66=0
We multiply parentheses
5x^2+x^2-66=0
We add all the numbers together, and all the variables
6x^2-66=0
a = 6; b = 0; c = -66;
Δ = b2-4ac
Δ = 02-4·6·(-66)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*6}=\frac{0-12\sqrt{11}}{12} =-\frac{12\sqrt{11}}{12} =-\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*6}=\frac{0+12\sqrt{11}}{12} =\frac{12\sqrt{11}}{12} =\sqrt{11} $

See similar equations:

| (4/5(15x-1)=-8) | | 2x(x+96)=69(x+96) | | 3x+30=12-7x | | 4x-2x+10=3 | | 3x-15=5x-7 | | 30+4y-8=14y-10-2y | | M=8.7m-56 | | 12-3a-3=9-59 | | (2x+8)^2-(3x-4)^2=0 | | 12.47+.18+0.06x=13.22-0.15 | | 9x^2+3x-14=180 | | 3(m-2)=30 | | 2x3.14x10=0 | | 149800/x=60 | | 8x7=14x | | 40+2m=-6m-3(-8m-8) | | 6x=16+4 | | 7x+21=14+35 | | 9x-12=15x+3 | | 9x-122=15x+3 | | 3x+15=12x+6 | | 43=15+7/10a | | 4j+26=50 | | 55+6x=180 | | x=(-29)=47 | | -2(5w-1)+3w=4+4(2w-2) | | 6(u-5)-4=-4(-6u+9)-8u | | -4(y-2)=-8y+36 | | -24=2x+5(x+5) | | 17=8(y-2)+3y | | 17/0.05=x | | 18x+12=6x+48 |

Equations solver categories