(5/6x)-(1/5x)=19

Simple and best practice solution for (5/6x)-(1/5x)=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6x)-(1/5x)=19 equation:



(5/6x)-(1/5x)=19
We move all terms to the left:
(5/6x)-(1/5x)-(19)=0
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/6x)-(+1/5x)-19=0
We get rid of parentheses
5/6x-1/5x-19=0
We calculate fractions
25x/30x^2+(-6x)/30x^2-19=0
We multiply all the terms by the denominator
25x+(-6x)-19*30x^2=0
Wy multiply elements
-570x^2+25x+(-6x)=0
We get rid of parentheses
-570x^2+25x-6x=0
We add all the numbers together, and all the variables
-570x^2+19x=0
a = -570; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·(-570)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*-570}=\frac{-38}{-1140} =1/30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*-570}=\frac{0}{-1140} =0 $

See similar equations:

| 50=10-5n | | x/25-20=-24 | | 6+3(11^4q)=18 | | n-2/2=-5 | | 67-2x=78-3x | | 4x-4-5x-10=180 | | -3n-6=-30 | | 8e-2=3e | | 2x-26+88=180 | | (u^2)+3u-10=0 | | -20=-(n+3) | | 2n+25+5n+36=180 | | 36-12y-3y=24 | | (u^2)+u-30=0 | | 54-x=x | | 7b-(2B+4)=5b-10 | | 17=g–12 | | x-54=x | | 4(5^5p)-3=-31 | | 4t+3.5=12 | | 3x-2x+4=+x+2 | | |2x+7|=21 | | 1/2(3x+10)=1/2(-3x+30) | | .4(8-y)=2y+16 | | (-5/6e)-(2/3e)=-24 | | 6=2/7(2x+28 | | 25x-10=27-10 | | 4(2x-7)+6=5x+8 | | 9-x+1=-17 | | 26=m–20 | | 6+-3z=15 | | (2x+1)=(3x-11) |

Equations solver categories