If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/6)x=300/432
We move all terms to the left:
(5/6)x-(300/432)=0
Domain of the equation: 6)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+5/6)x-(+300/432)=0
We multiply parentheses
5x^2-(+300/432)=0
We get rid of parentheses
5x^2-300/432=0
We multiply all the terms by the denominator
5x^2*432-300=0
Wy multiply elements
2160x^2-300=0
a = 2160; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·2160·(-300)
Δ = 2592000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592000}=\sqrt{518400*5}=\sqrt{518400}*\sqrt{5}=720\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-720\sqrt{5}}{2*2160}=\frac{0-720\sqrt{5}}{4320} =-\frac{720\sqrt{5}}{4320} =-\frac{\sqrt{5}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+720\sqrt{5}}{2*2160}=\frac{0+720\sqrt{5}}{4320} =\frac{720\sqrt{5}}{4320} =\frac{\sqrt{5}}{6} $
| 4x+6x-6=-8x-18 | | 2(6z+2=28 | | 3x=-2(3)x+1 | | 16-2x=3x+6x+1 | | 2y=12+8= | | 2y=12+8+ | | 4x+10+3x+12=361 | | 3x3+4x2=12x+16 | | 10r+3r+5=2(r-3) | | -1=2n+19 | | t/13=13 | | -2d+18-18-4d=60 | | 5200=75x | | 15-7x=41 | | 2x+180=60 | | 12x+24-5x-11=34 | | 5x+12+4x+13=115 | | a+19/13=3 | | 10x+6=4x+72 | | 4x+24=6x+4 | | 3x-x+2=10 | | -3(2y-2)-y=-4(y-4) | | 6x+4x+3x-10x+28+12-5=44 | | 2n^2+8n+15=7 | | 2u^2-5u-1=0 | | 4x+30-2x-12=30 | | 84-(2x+3)^3=12 | | 180x-(3)=540 | | 100x+32=1220 | | 6x(-8)=8x(-6) | | -x2+7x–6=-(x–1)(x–6) | | -x^2-9x+3=-7 |