(5/4)t=45/2

Simple and best practice solution for (5/4)t=45/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/4)t=45/2 equation:



(5/4)t=45/2
We move all terms to the left:
(5/4)t-(45/2)=0
Domain of the equation: 4)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+5/4)t-(+45/2)=0
We multiply parentheses
5t^2-(+45/2)=0
We get rid of parentheses
5t^2-45/2=0
We multiply all the terms by the denominator
5t^2*2-45=0
Wy multiply elements
10t^2-45=0
a = 10; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·10·(-45)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*10}=\frac{0-30\sqrt{2}}{20} =-\frac{30\sqrt{2}}{20} =-\frac{3\sqrt{2}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*10}=\frac{0+30\sqrt{2}}{20} =\frac{30\sqrt{2}}{20} =\frac{3\sqrt{2}}{2} $

See similar equations:

| x^2−10x-11=0 | | -13+4K=-4+6k-1 | | (-19)^5x=(-19)^11 | | 8x+3+5x-2=4 | | 5x2=8x=0 | | 3−8c=35 | | -2w-4+7=3w+18 | | 28a-4=80 | | 2x-5+6x=5x+4 | | 5x-27=-5+-1 | | (|5+3w|)/(-2)=-1 | | 4x-28=3-4x | | X-27=-(27z | | F(18)=-5/4t+4 | | 3(x–2)=2(x–3) | | 4+7m-3m=7m-5 | | Z=3a+3 | | 4(x-5)+15=35 | | j/5=3/4 | | a5=4(5) | | 3/4x-1=2/3x+2 | | 16x+10=13x-4 | | x/4=3.14 | | 2–6x=-3x+16–6x | | 0=4*4-2x | | -3(x+4)+1=4-3(2x+3)-1 | | 5/9s=5 | | (1/z-2)-(1/z+2)=4/(z^2)-4 | | 32x2+5=55 | | -g+7=1 | | 2–6x=-3x+16–6x | | –2z+3=8z−9z+5 |

Equations solver categories