(5/4)(4x+2)=3

Simple and best practice solution for (5/4)(4x+2)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/4)(4x+2)=3 equation:



(5/4)(4x+2)=3
We move all terms to the left:
(5/4)(4x+2)-(3)=0
Domain of the equation: 4)(4x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+5/4)(4x+2)-3=0
We multiply parentheses ..
(+20x^2+5/4*2)-3=0
We multiply all the terms by the denominator
(+20x^2+5-3*4*2)=0
We get rid of parentheses
20x^2+5-3*4*2=0
We add all the numbers together, and all the variables
20x^2-19=0
a = 20; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·20·(-19)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{95}}{2*20}=\frac{0-4\sqrt{95}}{40} =-\frac{4\sqrt{95}}{40} =-\frac{\sqrt{95}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{95}}{2*20}=\frac{0+4\sqrt{95}}{40} =\frac{4\sqrt{95}}{40} =\frac{\sqrt{95}}{10} $

See similar equations:

| 5x-2x-4=3 | | 10/3x+2=2 | | 6-2x/3=1 | | Y-3/2(y)-1/3=-1/8(y+2/3) | | 3x+25=78 | | 4x+6x5=21 | | 15^-7y=12 | | 2/5y=2.3=3/2y | | 6(6.5x+7)=-231 | | 3(n-1)+2nn=5 | | 2x/5+5/2=10 | | 4x+2x=40-8 | | X(x-1)=5x | | -4(2x-10)=13x+8 | | -2(4y-3)-8y+6=4(y-3) | | 2(x-5)+6=5x | | 3x+6=7x+26 | | 2(x+3)-4=14 | | 8+5z=2(32-7) | | 2(2m+7)=-28-6m | | 8x-14=-5x+48 | | 5/37x+15/37=20/37 | | 5/x+7/8=1 | | 5(x-1)=7(x-6) | | (-2)/(3)x(6x+7)+2x=(4x)/(3) | | 1/2(6h-4)=-5+1 | | 292z-8=16 | | 3x=8=-1 | | -5(1-4b)=7(b+3) | | -1.5(m+0.5)=-3 | | 3n+2n=7 | | -4=-7+x/2 |

Equations solver categories