(5/2x-5)+(4x)=180

Simple and best practice solution for (5/2x-5)+(4x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2x-5)+(4x)=180 equation:



(5/2x-5)+(4x)=180
We move all terms to the left:
(5/2x-5)+(4x)-(180)=0
Domain of the equation: 2x-5)!=0
x∈R
We add all the numbers together, and all the variables
4x+(5/2x-5)-180=0
We get rid of parentheses
4x+5/2x-5-180=0
We multiply all the terms by the denominator
4x*2x-5*2x-180*2x+5=0
Wy multiply elements
8x^2-10x-360x+5=0
We add all the numbers together, and all the variables
8x^2-370x+5=0
a = 8; b = -370; c = +5;
Δ = b2-4ac
Δ = -3702-4·8·5
Δ = 136740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136740}=\sqrt{4*34185}=\sqrt{4}*\sqrt{34185}=2\sqrt{34185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-370)-2\sqrt{34185}}{2*8}=\frac{370-2\sqrt{34185}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-370)+2\sqrt{34185}}{2*8}=\frac{370+2\sqrt{34185}}{16} $

See similar equations:

| x2-5.2x+7.8=0 | | 8v+40=-2(-7v-5) | | 2(x+1)=14(x-1) | | 2(x-1)=1/4(x-1) | | 2x+2=1-x/4 | | (4*2)*n=24 | | -33-8x=-5(1+5x)+3x | | x-x*0,08=2000 | | 18x7=126 | | -32=-8y+5(y-4) | | 3(2x-12)=2(3-x) | | X^3+5x^2-84x=0 | | x2-4x-14=7 | | 8x-12÷x=15-4x-3 | | 11x=x-13 | | X^2+549+5x=0 | | 5(1+2x)=21+8x | | 4x-5=2(3x+6) | | -17+4n=7(n+1) | | 6m-4=152 | | -26-5b=-7(8b-4)-3b | | 11x+17=37+7x | | 12x=29-5 | | -6n+4(8n-3)=32+4n | | 4(n+14)=3n-292 | | (3a-5)^2=0 | | 4-(12x-3)=3 | | 2(k-5)=300 | | 22=16+3x | | 7(x+3)-7x=4x+33 | | (n-1)(n-2)=336 | | 0=-0.006+1.2x+3 |

Equations solver categories