If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5)/(x)+(19)/(5x)-(1)/(5)=2
We move all terms to the left:
(5)/(x)+(19)/(5x)-(1)/(5)-(2)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 5x!=0determiningTheFunctionDomain 5/x+19/5x-2-1/5=0
x!=0/5
x!=0
x∈R
We calculate fractions
625x/125x^2+19x/125x^2+(-x)/125x^2-2=0
We add all the numbers together, and all the variables
625x/125x^2+19x/125x^2+(-1x)/125x^2-2=0
We multiply all the terms by the denominator
625x+19x+(-1x)-2*125x^2=0
We add all the numbers together, and all the variables
644x+(-1x)-2*125x^2=0
Wy multiply elements
-250x^2+644x+(-1x)=0
We get rid of parentheses
-250x^2+644x-1x=0
We add all the numbers together, and all the variables
-250x^2+643x=0
a = -250; b = 643; c = 0;
Δ = b2-4ac
Δ = 6432-4·(-250)·0
Δ = 413449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{413449}=643$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(643)-643}{2*-250}=\frac{-1286}{-500} =2+143/250 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(643)+643}{2*-250}=\frac{0}{-500} =0 $
| 8x=286 | | h=2-1 | | 2x2=3x+9 | | 1200=(10x)(x) | | 3(x-8)-4x-(x+7)*5=-11 | | 8x+()=10x | | 16+4/7r=16 | | 3x–5=9x+8–5x | | X2=12x-36 | | 8y+2(y-8)=4 | | 1/3(x-15)=21 | | 6x-21+3=6 | | x2-9x=x+24 | | (5/x)+(19/5x)-(1/5)=2 | | 5x+4(x+0,50)=20 | | -2/3z=4/15 | | 4(u+8)+2u=38 | | x2+6x=135 | | 3/4n+3/4n=45 | | 4^x-2=25 | | 13x-4=974 | | 9n-13=6n+7 | | -34=2v+3(v-3) | | -3x+20=-4x-1 | | 6(w+2)-3w=27 | | x+9=5x+3 | | 4x+16=-12x | | 4x+8(x-7)=-8 | | 4x+8(x-7)=8 | | x+|-2.8|=4.3 | | -6x+3=-5-8x | | 0.5x+0.5=0.75x+1=0.5x |