If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/x)+(19/5x)-(1/5)=2
We move all terms to the left:
(5/x)+(19/5x)-(1/5)-(2)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0determiningTheFunctionDomain (5/x)+(19/5x)-2-(1/5)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/x)+(+19/5x)-2-(+1/5)=0
We get rid of parentheses
5/x+19/5x-2-1/5=0
We calculate fractions
625x/125x^2+19x/125x^2+(-x)/125x^2-2=0
We add all the numbers together, and all the variables
625x/125x^2+19x/125x^2+(-1x)/125x^2-2=0
We multiply all the terms by the denominator
625x+19x+(-1x)-2*125x^2=0
We add all the numbers together, and all the variables
644x+(-1x)-2*125x^2=0
Wy multiply elements
-250x^2+644x+(-1x)=0
We get rid of parentheses
-250x^2+644x-1x=0
We add all the numbers together, and all the variables
-250x^2+643x=0
a = -250; b = 643; c = 0;
Δ = b2-4ac
Δ = 6432-4·(-250)·0
Δ = 413449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{413449}=643$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(643)-643}{2*-250}=\frac{-1286}{-500} =2+143/250 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(643)+643}{2*-250}=\frac{0}{-500} =0 $
| 5x+4(x+0,50)=20 | | -2/3z=4/15 | | 4(u+8)+2u=38 | | x2+6x=135 | | 3/4n+3/4n=45 | | 4^x-2=25 | | 13x-4=974 | | 9n-13=6n+7 | | -34=2v+3(v-3) | | -3x+20=-4x-1 | | 6(w+2)-3w=27 | | x+9=5x+3 | | 4x+16=-12x | | 4x+8(x-7)=-8 | | 4x+8(x-7)=8 | | x+|-2.8|=4.3 | | -6x+3=-5-8x | | 0.5x+0.5=0.75x+1=0.5x | | -24=6y+3(y+7) | | 2x+4/5=25/x+7 | | 4(8-5x)2x=-40 | | 8x+11=x+95 | | 5x+14=6x+4+3 | | 4x+5(-9)=3 | | 12x-45=51 | | 2^(x+3)=3(x-4) | | 4-2(3x)=32 | | x/9=x/10+1/9 | | (-2a)-(-9)=23 | | 1.6(3x+7)=134.2 | | 9z-5z=16 | | 16=16w |