(4x-8)+(1/4)x=180

Simple and best practice solution for (4x-8)+(1/4)x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-8)+(1/4)x=180 equation:



(4x-8)+(1/4)x=180
We move all terms to the left:
(4x-8)+(1/4)x-(180)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(4x-8)+(+1/4)x-180=0
We multiply parentheses
x^2+(4x-8)-180=0
We get rid of parentheses
x^2+4x-8-180=0
We add all the numbers together, and all the variables
x^2+4x-188=0
a = 1; b = 4; c = -188;
Δ = b2-4ac
Δ = 42-4·1·(-188)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16\sqrt{3}}{2*1}=\frac{-4-16\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16\sqrt{3}}{2*1}=\frac{-4+16\sqrt{3}}{2} $

See similar equations:

| X^3-8x^2+45x-116X=0 | | 11+3-7r=51 | | n*0=0 | | 16+r=7+4r | | (4x-8)+(1/4x)=180 | | 11r+3-7r=41 | | 2(x/2-3/2)+5/6=3x+2(3x/4+2/3) | | (x)=9.65+2.5x | | -4j+9=-2-4j | | -8+5x=-(3x+2) | | 22−3t=10 | | 2g+7=17 | | 4×8^2x+1=32^x+3 | | 5(x+7)=3x+19 | | 9=s4+ 5 | | 3/8n-4=5 | | 7=2(b+)-3 | | 2(x–3)=2x–6 | | 4(3y+9)-6=63 | | 266=x*0,35 | | 27+3r=10r | | w/3+4=22 | | 4.8^2x+1=32^x+3 | | -3+8v=7v+7 | | 5x+4-3x=9-x | | 14=-6+5v | | 4x+6x=5+3 | | 15/x+7=10 | | 4x+6x=8 | | 4x+3=-2x+27 | | 3x+30=10-x | | 7a-6-2a=19 |

Equations solver categories