(4x-8)+(1/4x)=180

Simple and best practice solution for (4x-8)+(1/4x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-8)+(1/4x)=180 equation:



(4x-8)+(1/4x)=180
We move all terms to the left:
(4x-8)+(1/4x)-(180)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(4x-8)+(+1/4x)-180=0
We get rid of parentheses
4x+1/4x-8-180=0
We multiply all the terms by the denominator
4x*4x-8*4x-180*4x+1=0
Wy multiply elements
16x^2-32x-720x+1=0
We add all the numbers together, and all the variables
16x^2-752x+1=0
a = 16; b = -752; c = +1;
Δ = b2-4ac
Δ = -7522-4·16·1
Δ = 565440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{565440}=\sqrt{64*8835}=\sqrt{64}*\sqrt{8835}=8\sqrt{8835}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-752)-8\sqrt{8835}}{2*16}=\frac{752-8\sqrt{8835}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-752)+8\sqrt{8835}}{2*16}=\frac{752+8\sqrt{8835}}{32} $

See similar equations:

| 11r+3-7r=41 | | 2(x/2-3/2)+5/6=3x+2(3x/4+2/3) | | (x)=9.65+2.5x | | -4j+9=-2-4j | | -8+5x=-(3x+2) | | 22−3t=10 | | 2g+7=17 | | 4×8^2x+1=32^x+3 | | 5(x+7)=3x+19 | | 9=s4+ 5 | | 3/8n-4=5 | | 7=2(b+)-3 | | 2(x–3)=2x–6 | | 4(3y+9)-6=63 | | 266=x*0,35 | | 27+3r=10r | | w/3+4=22 | | 4.8^2x+1=32^x+3 | | -3+8v=7v+7 | | 5x+4-3x=9-x | | 14=-6+5v | | 4x+6x=5+3 | | 15/x+7=10 | | 4x+6x=8 | | 4x+3=-2x+27 | | 3x+30=10-x | | 7a-6-2a=19 | | 6x+7+4x+13=180 | | 4(8-7x)=4(8x+8) | | -5x+-28=11 | | y/8+13=30 | | -5u+3(u-8)=-28 |

Equations solver categories