(4x-7)(2x-3)-(2x-3)(2x-3)=12

Simple and best practice solution for (4x-7)(2x-3)-(2x-3)(2x-3)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-7)(2x-3)-(2x-3)(2x-3)=12 equation:



(4x-7)(2x-3)-(2x-3)(2x-3)=12
We move all terms to the left:
(4x-7)(2x-3)-(2x-3)(2x-3)-(12)=0
We multiply parentheses ..
(+8x^2-12x-14x+21)-(2x-3)(2x-3)-12=0
We get rid of parentheses
8x^2-12x-14x-(2x-3)(2x-3)+21-12=0
We multiply parentheses ..
8x^2-(+4x^2-6x-6x+9)-12x-14x+21-12=0
We add all the numbers together, and all the variables
8x^2-(+4x^2-6x-6x+9)-26x+9=0
We get rid of parentheses
8x^2-4x^2+6x+6x-26x-9+9=0
We add all the numbers together, and all the variables
4x^2-14x=0
a = 4; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·4·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*4}=\frac{0}{8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*4}=\frac{28}{8} =3+1/2 $

See similar equations:

| x=0.5(x+5) | | 13x+11-12x=-18 | | 0.125x+3=9 | | |x-7|=3 | | 10x+2.4=2.8 | | x+4/2+x+5/3=8 | | 2(3x-4)=2x-8 | | 141=3(7-5n) | | -12x-6=66 | | -8(-4n+1)=-232 | | 3x-9=-2+11 | | 2(x-6)+3(x-4)+6(x-2)=8(x-5)+3(x-1) | | 3x-9=-2x-8 | | 99+x=113.5 | | 7+x=65.5 | | 11+79=x | | m=(26-12)/2 | | 36+58=x | | t3=3 | | x=-2+2.5 | | m2+12=26 | | 0.17k–0.43=0.25k+0.05 | | 144+58=x | | 5-x+17=-33 | | 5=q−1 | | -2(x+1.5)=x+5 | | -3(5x-3)=3x-8 | | x-28=8(2x+3)-22 | | 9*9*9*9*98-37=96-95-26+73n | | 2=p2 | | 4(-2x-1)=-13x-5 | | 1/2x=5/8x |

Equations solver categories