(4x-5)(10x-3)=(97-2x)

Simple and best practice solution for (4x-5)(10x-3)=(97-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-5)(10x-3)=(97-2x) equation:



(4x-5)(10x-3)=(97-2x)
We move all terms to the left:
(4x-5)(10x-3)-((97-2x))=0
We add all the numbers together, and all the variables
(4x-5)(10x-3)-((-2x+97))=0
We multiply parentheses ..
(+40x^2-12x-50x+15)-((-2x+97))=0
We calculate terms in parentheses: -((-2x+97)), so:
(-2x+97)
We get rid of parentheses
-2x+97
Back to the equation:
-(-2x+97)
We get rid of parentheses
40x^2-12x-50x+2x+15-97=0
We add all the numbers together, and all the variables
40x^2-60x-82=0
a = 40; b = -60; c = -82;
Δ = b2-4ac
Δ = -602-4·40·(-82)
Δ = 16720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16720}=\sqrt{16*1045}=\sqrt{16}*\sqrt{1045}=4\sqrt{1045}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{1045}}{2*40}=\frac{60-4\sqrt{1045}}{80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{1045}}{2*40}=\frac{60+4\sqrt{1045}}{80} $

See similar equations:

| (5x-16)=(2x)50 | | 5/5y-9/5=2 | | 16+6x=180 | | 9(3.5-0.75y)+3y=39 | | (x+21)+(3x-15)=180* | | 3(-2x+1)=-4(x-5)+1 | | 20x-7.5x+12=4x-124 | | 6=10w-7w | | 78=y/12 | | 25(x+15)=1200 | | 9.1a=4 | | 4h+21=3 | | 13.7=-w | | n/4=2.96 | | p+2.78=5.78 | | 3(m-5)+6=2m-8 | | 5+2x=7+8x | | r+607=701 | | 19=n/21 | | 5x-91=3x-77 | | 9.86=u+4.66 | | z+243=976 | | 5.8y+5.8=29 | | -11+5x=-16 | | 16.2=-1.3+7y | | u+913=-84 | | w/5.12+8=12 | | 552=-24q | | 5(3x+2)+1=15x+11 | | d-959=-467 | | -28w=-532 | | -6f=708 |

Equations solver categories