If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x-20)(x)=180
We move all terms to the left:
(4x-20)(x)-(180)=0
We multiply parentheses
4x^2-20x-180=0
a = 4; b = -20; c = -180;
Δ = b2-4ac
Δ = -202-4·4·(-180)
Δ = 3280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3280}=\sqrt{16*205}=\sqrt{16}*\sqrt{205}=4\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{205}}{2*4}=\frac{20-4\sqrt{205}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{205}}{2*4}=\frac{20+4\sqrt{205}}{8} $
| -2x-13=-4x+9 | | 9-y/4=19 | | 8x+19=x+47 | | (4•8)+(4x)=0 | | 9+n=4/12 | | 3x+6=4x-6=180 | | 4b-7=20 | | 5y-15=5(5-y) | | 9-4y=13+5-7y | | 2r+4r+2=-10 | | 5=(3-x) | | 5y-15=5(5-9) | | -11=7+r | | 2x/30=63/90 | | 10r+3=11 | | (1/3)+x=(3/2) | | 3x+5=7x-15= | | 10r-3=11 | | Y-4=1/2(2y-8) | | 1/3+x=3/2 | | 2x-30=63/90 | | 2x+4x=3x-10 | | 2-2x=x-8 | | 19=3(6n-5)-7(n+3) | | (6x+17)+(134-4x)=180 | | 14x^2-38x-12=0 | | 8.2=x-4.6 | | 32x+2380.193092309=33x+2938023.0293 | | 90+x=3x-14 | | 18+7+(18+2x)+7=0 | | x+79+90°=180° | | 3x+15=39(x+5) |