(4x-100)+(x+20)+(1/5x+2)=180

Simple and best practice solution for (4x-100)+(x+20)+(1/5x+2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-100)+(x+20)+(1/5x+2)=180 equation:



(4x-100)+(x+20)+(1/5x+2)=180
We move all terms to the left:
(4x-100)+(x+20)+(1/5x+2)-(180)=0
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
4x+x+1/5x-100+20+2-180=0
We multiply all the terms by the denominator
4x*5x+x*5x-100*5x+20*5x+2*5x-180*5x+1=0
Wy multiply elements
20x^2+5x^2-500x+100x+10x-900x+1=0
We add all the numbers together, and all the variables
25x^2-1290x+1=0
a = 25; b = -1290; c = +1;
Δ = b2-4ac
Δ = -12902-4·25·1
Δ = 1664000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1664000}=\sqrt{25600*65}=\sqrt{25600}*\sqrt{65}=160\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1290)-160\sqrt{65}}{2*25}=\frac{1290-160\sqrt{65}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1290)+160\sqrt{65}}{2*25}=\frac{1290+160\sqrt{65}}{50} $

See similar equations:

| A=m/360(3.14)4 | | X+6/2=2-x+4/7 | | (4x-100)+(x+20)+((1/5x)+2)=180 | | 3x-6=3+2-(x+1) | | -2(t-50)=32 | | (4x-100)+(x+20)+(((1/5)x)+2)=180 | | X+((x*7)+4)=180 | | x-2.5=5.5 | | 1-5b-6=15 | | X+3/14=6/7+x-2/4 | | X+((x*7)+4=180 | | 11+9=-5(8x-4) | | 6a(4)=180 | | (x+40)+(200-3x)=180 | | 2x-4+3x+2=18 | | 7(x-5+x=8(x-6)+13 | | 2b/3+6=-24 | | 1-n-4n=9 | | 17=-x+4 | | 5m+20=5(2m-1) | | 11+3x+x=2×+-11 | | -6x+27=-4(4+4x)+3 | | 4x+6x=216 | | 22x+5+7x+7=58 | | X+(x*7)+4=180 | | 59=15^x | | 45=15^x | | 4(2x+5)+5(3x-7)=38 | | 5(5x-3)+2=4 | | b+15.2=-4.5 | | -17x+20=194 | | -11+23=-2(x+6) |

Equations solver categories