If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4w-3)(1+w)=0
We add all the numbers together, and all the variables
(4w-3)(w+1)=0
We multiply parentheses ..
(+4w^2+4w-3w-3)=0
We get rid of parentheses
4w^2+4w-3w-3=0
We add all the numbers together, and all the variables
4w^2+w-3=0
a = 4; b = 1; c = -3;
Δ = b2-4ac
Δ = 12-4·4·(-3)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*4}=\frac{-8}{8} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*4}=\frac{6}{8} =3/4 $
| 21/2+7x-12x^2=0 | | 14x+25x^2+21=0 | | 2x+5/3=x-1/4 | | 2H+3m+8m-3m=0 | | 2/0.25=5/x | | -7-(x+2)=4x+2(x+6) | | 25x=100+8x | | 7(x-4)-12=19x-184 | | 0x^+2x+3=0 | | x-30=4(x/2)-30 | | 2x*2-33x+144=0 | | 20+1/8x=32 | | 16-3w=200 | | 1/4s-10=70 | | 7a-9=75 | | 1+3(x.1)=4 | | x^2-25x+5=0 | | x^2+-25x+5=0 | | 4x^2-4x-143=0 | | 2^3x+2=6 | | 30+4x=14 | | 3b^2+7b+12=0 | | 4x/3-x-1/2=11/4 | | 2x-3/4=1/3x+5/6 | | 28/2-p=64 | | (3(n-2)=15 | | 40x+20=82 | | 4n2-104n+672=0 | | 11=2πr | | 28p=42 | | 3y+42=8 | | 8x-4=3/2 |