If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4w)(10w-7)=0
We multiply parentheses
40w^2-28w=0
a = 40; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·40·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*40}=\frac{0}{80} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*40}=\frac{56}{80} =7/10 $
| 7x+2=14-5x | | (4q+5)(q-5)=0 | | d^2-4d=-3 | | 6-3x+9=-18 | | (d+5)(d+3)=0 | | -38y+41y=48 | | 8x-103x=90 | | 100=b+(b+2b-45) | | (A+2)(a-5)=0 | | x2+4x=-4 | | x=-14.6=2.96 | | 5-2+x=9+3x+10 | | 1+8x+9=-20+2x- | | 8x=204 | | 1+8x+9=20+2x- | | 2.3+0.5(3+x)=x | | 11x-3+18x+9=180 | | 3b+2=18,5 | | -14j-15=-99 | | X-20+2x-10=90 | | -3y+11=-8y- | | (b+9)^2=25 | | 12=4/5w+8 | | 6d+5=35 | | n-18n+65=0 | | -x5=25 | | -6x2^8x+22=1 | | 9x7^3x=45 | | 4x+7=9x+32 | | 6^7t=200 | | 6^7t=209 | | 36r=18 |