(4/9x)+(1/5x)=58

Simple and best practice solution for (4/9x)+(1/5x)=58 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/9x)+(1/5x)=58 equation:



(4/9x)+(1/5x)=58
We move all terms to the left:
(4/9x)+(1/5x)-(58)=0
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/9x)+(+1/5x)-58=0
We get rid of parentheses
4/9x+1/5x-58=0
We calculate fractions
20x/45x^2+9x/45x^2-58=0
We multiply all the terms by the denominator
20x+9x-58*45x^2=0
We add all the numbers together, and all the variables
29x-58*45x^2=0
Wy multiply elements
-2610x^2+29x=0
a = -2610; b = 29; c = 0;
Δ = b2-4ac
Δ = 292-4·(-2610)·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-29}{2*-2610}=\frac{-58}{-5220} =1/90 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+29}{2*-2610}=\frac{0}{-5220} =0 $

See similar equations:

| 10(g+5)=-2(g+6) | | 24=r/3+30 | | 2^2-x-2;x=3(2=-4 | | 4v+13=7(v+4 | | 1.5d+7.25=2.75d | | 10m-4m-7=6m-7 | | 7–3x=9+x | | Y-4=2(x-8 | | 2x-75+x=180 | | 8+7r=3-(1r+3) | | 3x-15+x+7=94 | | 19.95x+.05x=23.74x | | n^=256 | | –2r=20 | | 2x−17​ =−14 | | 19=a+11 | | -1/3b+1=-7 | | y=40/2.5 | | 2(x-8)=90 | | 19=11+2r | | 72-4n=-12n | | 6v+6(3v+4)=4(2v=2) | | 3y/5-9/5(3y-5)=y-1 | | 8x-5×=15 | | 19.95x+.05x=23.74 | | 100,000+x+2x=1,100,000 | | (m+5)/2=12 | | g/3-8=11 | | 9d+2=32 | | 10x-26+7x+10=90 | | 68=0.2(20x+500)+2 | | X-6+5x=11 |

Equations solver categories